Advertisement

Structural Trends in Network Ensembles

  • Ulrik Brandes
  • Jürgen Lerner
  • Uwe Nagel
  • Bobo Nick
Part of the Studies in Computational Intelligence book series (SCI, volume 207)

Abstract

A collection of networks is considered a network ensemble if its members originate from a common natural or technical process such as repeated measurements, replication and mutation, or massive parallelism, possibly under varying conditions. We propose a spectral approach to identify structural trends, i. e. prevalent patterns of connectivity, in an ensemble by delineating classes of networks with similar role structure. Formal, experimental, and practical evidence of its potential is given.

Keywords

Adjacency Matrix Random Graph Adjacency Matrice Structural Trend Instance Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Krivelevich, M., Vu, V.H.: On the concentration of eigenvalues of random symmetric matrices. Israel Journal of Mathematics 131(1), 259–267 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bianconi, G.: The entropy of randomized network ensembles. Europhysics Letters 81, 28005 (2008)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Borgatti, S.P., Everett, M.G.: Notions of position in social network analysis. Sociological Methodology 22, 1–35 (1992)CrossRefGoogle Scholar
  4. 4.
    Brandes, U., Erlebach, T. (eds.): Network Analysis. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  5. 5.
    Brandes, U., Kenis, P., Lerner, J., van Raaij, D.: Network analysis of collaboration structure in Wikipedia. In: Proc. 18th Intl. World Wide Web Conf. (WWW 2009) (to appear, 2009)Google Scholar
  6. 6.
    Brandes, U., Lerner, J., Lubbers, M.J., McCarty, C., Molina, J.L.: Visual statistics for collections of clustered graphs. In: Proc. IEEE Pacific Visualization Symp (PacificVis 2008), pp. 47–54 (2008)Google Scholar
  7. 7.
    Butts, C.T., Carley, K.M.: Some simple algorithms for structural comparison. Computational & Mathematical Organization Theory 11(4), 291–305 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Carley, K.M., Lee, J.-S., Krackhardt, D.: Destabilizing networks. Connections 24(3), 79–92 (2002)Google Scholar
  9. 9.
    Faust, K.: Comparing social networks: Size, density, and local structure. Metodološki zvezki 3(2), 185–216 (2006)Google Scholar
  10. 10.
    Faust, K., Skvoretz, J.: Comparing networks across space and time, size and species. Sociological Methodology 32(1), 267–299 (2002)CrossRefGoogle Scholar
  11. 11.
    Fiala, J., Paulusma, D.: The computational complexity of the role assignment problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 817–828. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Golub, B., Jackson, M.O.: How homophily affects communication in networks (2008), http://arxiv.org/abs/0811.4013
  13. 13.
    Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Physical Review E 73 (2006)Google Scholar
  14. 14.
    Lerner, J.: Role assignments. In: Brandes and Erlebach [4], pp. 216–252Google Scholar
  15. 15.
    McSherry, F.: Spectral partitioning of random graphs. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2001), pp. 529–537 (2001)Google Scholar
  16. 16.
    Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, London (1990)zbMATHGoogle Scholar
  17. 17.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  18. 18.
    Welser, H.T., Gleave, E., Fisher, D., Smith, M.: Visualizing the signatures of social roles in online discussion groups. Journal of Social Structure 8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Jürgen Lerner
    • 1
  • Uwe Nagel
    • 1
  • Bobo Nick
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of Konstanz 

Personalised recommendations