Optimal Use of Expert Knowledge in Ant Colony Optimization for the Analysis of Epistasis in Human Disease

  • Casey S. Greene
  • Jason M. Gilmore
  • Jeff Kiralis
  • Peter C. Andrews
  • Jason H. Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5483)


The availability of chip-based technology has transformed human genetics and made routine the measurement of thousands of DNA sequence variations giving rise to an informatics challenge. This challenge is the identification of combinations of interacting DNA sequence variations predictive of common diseases. We have previously developed Multifactor Dimensionality Reduction (MDR), a method capable of detecting these interactions, but an exhaustive MDR analysis is exponential in time complexity and thus unsuitable for an interaction analysis of genome-wide datasets. Therefore we look to stochastic search approaches to find a suitable wrapper for the analysis of these data. We have previously shown that an ant colony optimization (ACO) framework can be successfully applied to human genetics when expert knowledge is included. We have integrated an ACO stochastic search wrapper into the open source MDR software package. In this wrapper we also introduce a scaling method based on an exponential distribution function with a single user-adjustable parameter. Here we obtain expert knowledge from Tuned ReliefF (TuRF), a method capable of detecting attribute interactions in the absence of main effects, and perform a power analysis at different parameter settings. We show that the expert knowledge distribution parameter, the retention factor, and the weighting of expert knowledge significantly affect the power of the method.


Expert Knowledge Retention Factor Sporadic Breast Cancer International HapMap Consortium Common Human Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity 56, 73–82 (2003)CrossRefGoogle Scholar
  2. 2.
    Bateson, W.: Mendel’s Principles of Heredity. Cambridge University Press, Cambridge (1909)CrossRefGoogle Scholar
  3. 3.
    Shull, G.H.: Duplicate genes for capsule form in Bursa bursa-pastoris. J. Ind. Abst. Vererb 12, 97–149 (1914)Google Scholar
  4. 4.
    Hirschhorn, J.N., Lohmueller, K., Byrne, E., Hirschhorn, K.: A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002)CrossRefGoogle Scholar
  5. 5.
    Finckh, U.: The future of genetic association studies in Alzheimer disease. Journal of Neural Transmission 110(3), 253–266 (2003)CrossRefGoogle Scholar
  6. 6.
    Templeton, A.: Epistasis and complex traits. Epistasis and the Evolutionary Process, 41–57 (2000)Google Scholar
  7. 7.
    Leamy, L.J., Routman, E.J., Cheverud, J.M.: An Epistatic Genetic Basis for Fluctuating Asymmetry of Mandible Size in Mice. Evolution 56(3), 642–653 (2002)CrossRefGoogle Scholar
  8. 8.
    Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell (2002)CrossRefMATHGoogle Scholar
  9. 9.
    The International HapMap Consortium: A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005)Google Scholar
  10. 10.
    Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical report 91-016, Dipartimento di Elettronica e Informatica, Politecnico di Milano (1991)Google Scholar
  11. 11.
    Greene, C.S., White, B.C., Moore, J.H.: Ant colony optimization for genome-wide genetic analysis. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 37–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant system for job-shop scheduling. Belg. J. Oper. Res. 34, 39–53 (1994)MATHGoogle Scholar
  13. 13.
    Parpinelli, R., Lopes, H., Freitas, A.: An Ant Colony Based System for Data Mining: Applications to Medical Data. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 791–797 (2001)Google Scholar
  14. 14.
    Dorigo, M., Stützle, T.: Ant Colony Optimization (2004)Google Scholar
  15. 15.
    Brutschy, A., Scheidler, A., Merkle, D., Middendorf, M.: Learning from house-hunting ants: Collective decision-making in organic computing systems. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 96–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Moore, J.H., White, B.C.: Genome-wide genetic analysis using genetic programming: The critical need for expert knowledge. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice IV. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine Learning: Proceedings of the AAAI 1992 (1992)Google Scholar
  18. 18.
    Kononenko, I.: Estimating attributes: Analysis and extension of relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  19. 19.
    Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1-2), 23–69 (2003)CrossRefMATHGoogle Scholar
  20. 20.
    Moore, J.H., White, B.C.: Tuning relieff for genome-wide genetic analysis. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 166–175. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. American Journal of Human Genetics 69, 138–147 (2001)CrossRefGoogle Scholar
  22. 22.
    Moore, J.H., Gilbert, J.C., Tsai, C.T., Chiang, F.T., Holden, T., Barney, N., White, B.C.: A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology 241(2), 252–261 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Julià, A., Moore, J., Miquel, L., Alegre, C., Barceló, P., Ritchie, M., Marsal, S.: Identification of a two-loci epistatic interaction associated with susceptibility to rheumatoid arthritis through reverse engineering and multifactor dimensionality reduction. Genomics 90(1), 6–13 (2007)CrossRefGoogle Scholar
  24. 24.
    Beretta, L., Cappiello, F., Moore, J.H., Barili, M., Greene, C.S., Scorza, R.: Ability of epistatic interactions of cytokine single-nucleotide polymorphisms to predict susceptibility to disease subsets in systemic sclerosis patients. Arthritis and Rheumatism 59(7), 974–983 (2008)CrossRefGoogle Scholar
  25. 25.
    Sokal, R.R., Rohlf, F.J.: Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Co., New York (1995)MATHGoogle Scholar
  26. 26.
    Hastie, T., Tibshirani, R., Friedman, J.: Elements of Statistical Learning, 1st edn. Springer, Canada (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Harrell Jr., F.E.: Design: Design Package (2007)Google Scholar
  28. 28.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008)Google Scholar
  29. 29.
    Snel, B., Lehmann, G., Bork, P., Huynen, M.A.: String: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Research 28(18), 3442–3444 (2000)Google Scholar
  30. 30.
    The Gene Ontology Consortium: Gene ontology: Tool for the unification of biology. Nature Genetics 25, 25–29 (2000)Google Scholar
  31. 31.
    Kanehisa, M., Goto, S.: Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1), 27–30 (2000)CrossRefGoogle Scholar
  32. 32.
    Pattin, K., Moore, J.: Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases. Human Genetics 124(1), 19–29 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Casey S. Greene
    • 1
  • Jason M. Gilmore
    • 1
  • Jeff Kiralis
    • 1
  • Peter C. Andrews
    • 1
  • Jason H. Moore
    • 1
  1. 1.Dartmouth CollegeLebanonUSA

Personalised recommendations