A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony

  • Jean-Michel Richer
  • Adrien Goëffon
  • Jin-Kao Hao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5483)

Abstract

The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA, RNA or protein sequences while minimizing the number of evolutionary changes. Much work has been devoted by the research community to solve this NP-complete problem and many algorithms and techniques have been devised in order to find high quality solutions with reasonable computational resources. In this paper we present a memetic algorithm (implemented in the software Hydra) which is based on an integration of an effective local search operator with a specific topological tree crossover operator. We report computational results of Hydra on a set of 12 benchmark instances from the literature and demonstrate its effectiveness with respect to one of the most powerful software (TNT). We also study the behavior of the algorithm with respect to some fundamental ingredients.

Keywords

Maximum Parsimony phylogeny progressive descent tree crossover memetic algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreatta, A.A., Ribeiro, C.C.: Heuristics for the phylogeny problem. Journal of Heuristics 8, 429–447 (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Cavalli-Sforza, L.L., Edwards, A.W.F.: Phylogenetic analysis: models and estimation procedures. Evolution 32, 550–570 (1967)CrossRefGoogle Scholar
  3. 3.
    Edwards, A.W.F., Cavalli-Sforza, L.L.: The reconstruction of evolution. Annals of Human Genetics 27, 105–106 (1963)Google Scholar
  4. 4.
    Felsenstein, J.: Evolutionary trees from dna sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376 (1981)CrossRefGoogle Scholar
  5. 5.
    Fitch, W.: Towards defining course of evolution: minimum change for a specified tree topology. Systematic Zoology 20, 406–416 (1971)CrossRefGoogle Scholar
  6. 6.
    Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155(3760), 279–284 (1967)CrossRefGoogle Scholar
  7. 7.
    Foulds, L.R., Graham, R.L.: The steiner problem in phylogeny is np-complete. Advances in Applied Mathematics 3, 43–49 (1982)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gascuel, O.: On the optimization principle in phylogenetic analysis and the minimum evolution criterion. Biology and Evolution 17, 401–405 (2000)CrossRefGoogle Scholar
  9. 9.
    Goëffon, A., Richer, J.M., Hao, J.K.: A distance-based information preservation tree crossover for the maximum parsimony problem. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 761–770. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Goëffon, A., Richer, J.M., Hao, J.K.: Progressive tree neighborhood applied to the maximum parsimony problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(1) (January-March 2008)Google Scholar
  11. 11.
    Goloboff, P.A., Farris, J.S., Nixon, K.: Tnt: Tree analysis using new technology (2003), http://www.cladistics.com/aboutTNT.html
  12. 12.
    Goloboff, P.A.: Character optimisation and calculation of tree lengths. Cladistics 9, 433–436 (1993)CrossRefGoogle Scholar
  13. 13.
    Hillis, D.M., Moritz, C., Mable, B.K.: Molecular Systematics. Sinauer Associates, Inc. (1996)Google Scholar
  14. 14.
    Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  15. 15.
    Nixon, K.C.: The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414 (1999)CrossRefGoogle Scholar
  16. 16.
    Ribeiro, C.C., Vianna, D.S.: A grasp/vnd heuristic for the phylogeny problem using a new neighborhood structure. International Transactions in Operational Research 12, 1–14 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)Google Scholar
  18. 18.
    Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38, 1409–1438 (1958)Google Scholar
  19. 19.
    Sokal, R.R., Sneath, P.H.A.: Principles of Numerical Taxonomy. W.H. Freeman, San Francisco (1963)MATHGoogle Scholar
  20. 20.
    Swofford, D.L., Olsen, G.J.: Phylogeny Reconstruction. In: Hillis, D.M., Moritz, C. (eds.) Molecular Systematics, ch. 11, pp. 411–501 (1990)Google Scholar
  21. 21.
    Waterman, M.S., Smith, T.F.: On the similarity of dendograms. Journal of Theoretical Biology 73, 789–800 (1978)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean-Michel Richer
    • 1
  • Adrien Goëffon
    • 2
  • Jin-Kao Hao
    • 1
  1. 1.University of Angers, LERIAAnger Cedex 01France
  2. 2.LaBRI (UMR 5800) Université de BordeauxTalence CedexFrance

Personalised recommendations