Information Superiority via Formal Concept Analysis

Chapter

Summary

This chapter will show how to get more mileage out of information. To achieve that, we first start with an introduction to the fundamentals of Formal Concept Analysis (FCA). FCA is a highly versatile field of applied lattice theory, which allows hidden relationships to be uncovered in relational data. Moreover, FCA provides a distinguished supporting framework to subsequently find and fill information gaps in a systematic and rigorous way. In addition, we would like to build bridges via a universal approach to other communities which can be related to FCA in order for other research areas to benefit from a theory that has been elaborated for more than twenty years. Last but not least, the essential benefits of FCA will be presented algorithmically as well as theoretically by investigating a real data set from the MIPT Terrorism Knowledge Base and also by demonstrating an application in the field of Web Information Retrieval and Web Intelligence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, P., and J. H. Correia. 2005. The ToscanaJ suite for implementing conceptual information systems. In Formal Concept Analysis, Foundations and Applications. Ed. B. Ganter, G. Stumme, and R. Wille. Berlin: Springer-Verlag.Google Scholar
  2. Belohlavek, R. 2002. Fuzzy Relational Systems: Foundations and Principles. New York: Kluwer Academic.Google Scholar
  3. Carpineto, C., and G. Romano. 2004. Concept Data Analysis: Theory and Applications. Chichester: John Wiley & Sons.Google Scholar
  4. Department of Homeland Security, Customs and Border Protection, U.S. Border Patrol, America’s Shield Initiative Industry Day, at 18 (Aug. 5, 2004). http://www.epic.org/privacy/surveillance/spotlight/
  5. Encyclopedia Britannica. Washington Conference. http://www.britannica.com/eb/article-9076190
  6. Farley, J. D. 2003. Breaking Al Qaeda cells: A mathematical analysis of counterterrorism operations (a guide for risk assessment and decision making). In Studies in Conflict and Terrorism, 26:399-411(13). Oxford: Taylor & Francis.Google Scholar
  7. Ganter, B. 1986. Algorithmen zur formalen Begriffsanalyse. In Beiträge zur Begriffsanalyse (in German). Ed. B. Ganter, R. Wille, and K. E. Wolff. BI Wissenschaftsverlag, Mannheim.Google Scholar
  8. Ganter, B., and R. Wille. 1999. Formal Concept Analysis: Mathematical Foundations. Berlin: Springer-Verlag.Google Scholar
  9. Haralick, R. M. 1974. The diclique representation and decomposition of binary relations. Journal of the Association for Computing Machinery, 21(3) 356–366.Google Scholar
  10. Hotho, A., S. Staab, and G. Stumme. 2003. Explaining text clustering results using semantic structures. In Principles of Data Mining and Knowledge Discovery, 7th European Conference, PKDD 2003 217–228. Berlin: Springer-Verlag.Google Scholar
  11. Koester, B. 2005. Conceptual knowledge processing with Google. In Lernen, Wissensentdeckung und Adaptivität. Ed. M. Bauer, J. Fürnkranz, A. Kröner, et al. LWA 2005, GI Workshops, Saarbrücken, October 10–12.Google Scholar
  12. Koester, B. 2006a. FooCA: Enhancing Google information research by means of Formal Concept Analysis. In Contributions to ICFCA 2006. Ed. B. Ganter and L. Kwuida. Verlag Allgemeine Wissenschaft, Mühltal.Google Scholar
  13. Koester, B. 2006b. Conceptual knowledge retrieval with FooCA: Improving Web search engine results with contexts and concept hierarchies. In Advances in Data Mining, Proceedings of ICDM 2006, Leipzig, Germany 176–190. Ed. P. Perner. Berlin: Springer-Verlag.Google Scholar
  14. Koester, B. 2006c. FooCA – Web Information Retrieval with Formal Concept Analysis. Verlag Allgemeine Wissenschaft, Mühltal.Google Scholar
  15. Pollandt, S. 1996. Fuzzy-Begriffe: Formale Begriffsanalyse unscharfer Daten (in German). Berlin: Springer-Verlag.Google Scholar
  16. Priss, U. 2006. Formal concept analysis in information science. In Annual Review of Information Science and Technology, 40:521–543. Ed. B. Cronin.Google Scholar
  17. Rome, J. E., and R. M. Haralick. 2005. Towards a formal concept analysis approach to exploring communities on the World Wide Web. In Formal Concept Analysis, ICFCA 2005, Lens, France, February 14–18, 2005, Proceedings. B. Ganter and R. Godin. Berlin: Springer-Verlag.Google Scholar
  18. Schröder, B. S. W. 2003. Ordered Sets: An Introduction. Boston: Birkhäuser, Boston.Google Scholar
  19. Stumme, G., Y. Bastide, L. Lakhal, N. Pasquier, and R. Taouil. 2002. Computing iceberg concept lattices with TITANIC. In Data Knowledge Engineering, vol. 42. pp. 189–222. Amsterdam: Elsevier Science Publishers B.V.Google Scholar
  20. Voss, S., and C. Joslyn. Advanced knowledge integration in assessing terrorist threats LDRD-DR. Los Alamos National Laboratory Internal Report. LAUR 02-6557.Google Scholar
  21. Yao, Y. Y., and Y. Chen. 2004. Rough set approximations in formal concept analysis. In Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, NAFIPS 04 73–78.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Technische Universität DresdenDresdenGermany

Personalised recommendations