Adaptability of Algorithms for Real-Valued Optimization

  • Mike Preuss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)


We investigate the adaptability of optimization algorithms for the real-valued case to concrete problems via tuning. However, the focus is not primarily on performance, but on the tuning potential of each algorithm/problem system, for which we define the empirical tuning potential measure (ETP). It is tested if this measure fulfills some trivial conditions for usability, which it does. We also compare the best obtained configurations of 4 adaptable algorithms (2 evolutionary, 2 classic) with classic algorithms under default settings. The overall outcome is quite mixed: Sometimes adapting algorithms is highly profitable, but some problems are already solved to optimality by classic methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auger, A., Hansen, N.: A Restart CMA Evolution Strategy With Increasing Population Size. In: McKay, B., et al. (eds.) Proc. 2005 Congress on Evolutionary Computation (CEC 2005), Piscataway NJ, pp. 1769–1776. IEEE Press, Los Alamitos (2005)Google Scholar
  2. 2.
    Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation – The New Experimentalism. Natural Computing Series. Springer, Berlin (2006)MATHGoogle Scholar
  3. 3.
    Bartz-Beielstein, T., Preuss, M.: Considerations of Budget Allocation for Sequential Parameter Optimization (SPO). In: Paquete, L., Chiarandini, M., Basso, D. (eds.) Empirical Methods for the Analysis of Algorithms, Workshop EMAA 2006, Proceedings, Reykjavik, Iceland, pp. 35–40 (2006)Google Scholar
  4. 4.
    Belisle, C.J.P.: Convergence theorems for a class of simulated annealing algorithms on \(\mathbb R^d\). Annals of Applied Probability 29, 885–895 (1992)MathSciNetMATHGoogle Scholar
  5. 5.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proc. Genetic and Evolutionary Computation Conf. (GECCO 2002). Morgan Kaufmann, San Francisco (2002)Google Scholar
  7. 7.
    Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing 16, 1190–1208 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Clausen, A.: An implementation of the bfgs algorithm for smooth function minimization (2007),
  9. 9.
    Eiben, A.E., Jelasity, M.: A critical note on experimental research methodology in EC. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 582–587. IEEE Press, Los Alamitos (2002)Google Scholar
  10. 10.
    Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. IEEE Computational Intelligence Magazine 9(2), 159–195 (2001)Google Scholar
  11. 11.
    Jong, K.D.: Parameter setting in eas: a 30 year perspective. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. Springer, Berlin (2007)Google Scholar
  12. 12.
    Nash, J.C.: Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd edn. IOP, Bristol (1990)MATHGoogle Scholar
  13. 13.
    Nelder, J.A., Mead: A simplex method for function minimization. The Computer Journal (7), 308–313 (1965)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Schwefel, H.-P.: Direct search for optimal parameters within simulation models. In: Conine, R.D., et al. (eds.) Proc. Twelfth Annual Simulation Symp., Tampa FL, Long Beach, CA, pp. 91–102. IEEE Computer Society, Los Alamitos (1979)Google Scholar
  15. 15.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore (May 2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mike Preuss
    • 1
  1. 1.Chair of Algorithm EngineeringTechnische Universität DortmundDortmundGermany

Personalised recommendations