Evolving Indirectly Represented Melodies with Corpus-Based Fitness Evaluation

  • Jacek Wolkowicz
  • Malcolm Heywood
  • Vlado Keselj
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)

Abstract

The paper addresses the issue of automatic generation of music excerpts. The character of the problem makes it suitable for various kinds of evolutionary computation algorithms. We introduce a special method of indirect melodic representation that allows simple application of standard search operators like crossover and mutation with no repair mechanisms necessary. A method is proposed for automatic evaluation of melodies based upon a corpus of manually coded examples, such as classical music opi. Various kinds of Genetic Algorithm (GA) were tested against this e.g., generational GAs and steady-state GAs. The results show the ability of the method for further applications in the domain of automatic music composition.

Keywords

Music generation unigrams MIDI generational genetic algorithms Steady-state genetic algorithms automatic fitness assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biles, J.: GenJam: A Genetic Algorithm for Generating Jazz Solos. In: Proceedings of the 1994 International Computer Music Conference, Aarhus, Denmark (1994)Google Scholar
  2. 2.
    Gartland-Jones, A.: MusicBlox: A Real-Time Algorithmic Composition System Incorporating a Distributed Interactive Genetic Algorithm. In: Raidl, G.R., et al. (eds.) EvoMusArt 2003. LNCS, vol. 2611, pp. 490–501. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Jacob, B.L.: Composing with genetic algorithms. In: Proceedings of the 1995 International Computer Music Conference, pp. 452–455 (1995)Google Scholar
  4. 4.
    Johanson, B., Poli, R.: GP-Music: An interactive genetic programming System for music generation with automated fitness raters (Technical report CSRP-98-13). School of Computer Science, The University of Birmingham, Birmingham, UK (1998)Google Scholar
  5. 5.
    Manaris, B., Machado, P., McCauley, C., Romero, J., Krehbiel, D.: Developing fitness functions for pleasant music: Zipf’s law and interactive evolution systems. In: Rothlauf, F., et al. (eds.) EvoMusArt 2005. LNCS, vol. 3449, pp. 498–507. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    McCormack, J.: Open Problems in Evolutionary Music and Art. In: Rothlauf, F., et al. (eds.) EvoMusArt 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Papadopoulos, G., Wiggins, G.: A Genetic Algorithm for the Generation of Jazz Melodies. In: Proceedings of the Finnish Conference on Artificial Intelligence (SteP 1998), Jyvaskyla, Finland, September 7-9 (1998)Google Scholar
  8. 8.
    Phon-Amnuaisuk, S., Law, E.H.H., Kuan, H.C.: Evolving Music Generation with SOM-Fitness Genetic Programming. In: Giacobini, M., et al. (eds.) EvoMusArt 2007. LNCS, vol. 4448, pp. 557–566. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Oliwa, T., Wagner, M.: Composing Music with Neural Networks and Probabilistic Finite-State Machines. In: Giacobini, M., et al. (eds.) EvoMusArt 2008. LNCS, vol. 4974, pp. 503–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Wolkowicz, J.: N-gram-based approach to automatic composer recognition. Master’s Thesis. Warsaw University of Technology (2007)Google Scholar
  11. 11.
    Worth, P., Stepney, S.: Growing Music: Musical Interpretations of L-Systems. In: Rothlauf, F., et al. (eds.) EvoMusArt 2005. LNCS, vol. 3449, pp. 545–550. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jacek Wolkowicz
    • 1
  • Malcolm Heywood
    • 1
  • Vlado Keselj
    • 1
  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifax NSCanada

Personalised recommendations