Generation of Pop-Rock Chord Sequences Using Genetic Algorithms and Variable Neighborhood Search

  • Leonardo Lozano
  • Andrés L. Medaglia
  • Nubia Velasco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)

Abstract

This work proposes a utility function that measures: 1) the vertical relation between notes in a melody and chords in a sequence, and 2) the horizontal relation among chords. This utility function is embedded in a procedure that combines a Genetic Algorithm (GA) with a Variable Neighborhood Search (VNS) to automatically generate style-based chord sequences. The two-step algorithm is tested in ten popular songs, achieving accompaniments that match closely those of the original versions.

Keywords

Musical harmony Genetic Algorithms Variable Neighborhood Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chuan, C., Chew, E.: A Hybrid System for Automatic Generation of Style-Specific Accompaniment. In: Proceedings of the Fourth International Joint Workshop on Computational Creativity, University of London (2007)Google Scholar
  2. 2.
    Hansen, P., Mladenoic, N.: Variable Neighborhood Search: Principles and Applications. European Journal of Operational Research 130, 449–467 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Harrison, M.: Contemporary Music Theory Level Two. Hal Leonard, Milwaukee (2004)Google Scholar
  4. 4.
    Kotska, S., Payne, D.: Tonal Harmony with an Introduction to Twentieth-Century Music. McGraw-Hill, New York (2003)Google Scholar
  5. 5.
    Manaris, B., Machado, P., McCauley, C., Romero, J., Krehbiel, D.: Developing Fitness Functions for Pleasant Music: Zipf’s Law and Interactive Evolution Systems. In: EvoMUSART 2005, 3rd European Workshop on Evolutionary Music and Art, Lausanne, Switzerland (2005)Google Scholar
  6. 6.
    Medaglia, A.L., Gutiérrez, E.: JGA: An Object-Oriented Framework for Rapid Development of Genetic Algorithms. In: Rennard, J.-P. (ed.) Handbook of Research on Nature Inspired Computing for Economics and Management. Grenoble (2006)Google Scholar
  7. 7.
    Michalewicz, Z.: Genetic Algorithms Plus Data Structures Equals Evolution Programs. Springer, New York (1996)CrossRefMATHGoogle Scholar
  8. 8.
    Morris, D., Basu, S., Simon, I.: MySong: Automatic Accompaniment Generation for Vocal Melodies (2008)Google Scholar
  9. 9.
    Piston, W., DeVoto, M.: Harmony. Editorial Labor, Barcelona (1992)Google Scholar
  10. 10.
    Schell, D.: Optimality in Musical Melodies and Harmonic Progressions: The Traveling Musician. European Journal of Operational Research 140(2), 354–372 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sorensen, A., Brown, A.: jMusic: Musical Composition with Java (website). (last accessed on: November 9, 2008), http://jmusic.ci.qut.edu.au/index.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Leonardo Lozano
    • 1
  • Andrés L. Medaglia
    • 1
  • Nubia Velasco
    • 1
  1. 1.Departamento de Ingeniería Industrial Centro de Optimización y Probabilidad AplicadaUniversidad de los AndesUSA

Personalised recommendations