On the Socialization of Evolutionary Art

  • Juan Romero
  • Penousal Machado
  • Antonino Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)


The lack of a social context is a drawback in current Interactive Evolutionary Computation systems. In application areas where cultural characteristics are particularly important, such as visual arts and music, this problem becomes more pressing. To address this issue, we analyze variants of the traditional Interactive Evolutionary Art approach – such as multi-user, parallel and partially interactive approaches – and present an extension of the traditional Interactive Evolutionary Computation paradigm. This extension incorporates users and systems in a Hybrid Society model, that allows the interaction between multiple users and systems, establishing n − m relations among them, and promotes cooperation.


Genetic Code Social Domain Computer Music Multi User Interactive Evolutionary Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, P., Corne, D. (eds.): Creative Evolutionary Systems. Morgan Kaufman, San Francisco (2001)Google Scholar
  2. 2.
    Johnson, C., Romero, J.: Genetic algorithms in visual art and music. Leonardo 35(2), 175–184 (2002)CrossRefGoogle Scholar
  3. 3.
    Todd, P.M., Werner, G.M.: Frankensteinian methods for evolutionary music composition. In: Musical networks, pp. 313–339. MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Pazos, A., Santos, A., Arcay, B., Dorado, J., Romero, J., Rodríguez, J.: An application framework for building evolutionary computer systems in music. Leonardo 36(1), 61–64 (2003)CrossRefGoogle Scholar
  5. 5.
    Machado, P., Romero, J., Manaris, B., Santos, A., Cardoso, A.: Power to the critics — A framework for the development of artificial art critics. In: IJCAI 2003 Workshop on Creative Systems, Acapulco, Mexico (2003)Google Scholar
  6. 6.
    Romero, J.: Metodología Evolutiva para la Construcción de Modelos Cognitivos Complejos. Exploración de la Creatividad Artificial en Composición Musical. PhD thesis, University of Corunha, Corunha, Spain (2002) (in Spanish)Google Scholar
  7. 7.
    Biles, J.: GenJam Populi: Training an IGA via audience-mediated performance. In: Proceedings of International Computer Music Conference, pp. 347–348. International Computer Music Association (1996)Google Scholar
  8. 8.
    Machado, P., Romero, J., Cardoso, A., Santos, A.: Partially interactive evolutionary artists. New Generation Computing – Special Issue on Interactive Evolutionary Computation 23(42), 143–155 (2005)Google Scholar
  9. 9.
    Romero, J., Machado, P., Santos, A., Cardoso, A.: On the development of critics in evolutionary computation artists. In: Raidl, G.R., et al. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 559–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Machado, P., Romero, J., Santos, A., Cardoso, A., Manaris, B.: Adaptive critics for evolutionary artists. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 435–444. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., Davis, R.: Zipf’s law, music classification and aesthetics. Computer Music Journal 29(1), 55–69 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan Romero
    • 1
  • Penousal Machado
    • 2
  • Antonino Santos
    • 1
  1. 1.Faculty of Computer ScienceUniversity of CoruñaCoruñaSpain
  2. 2.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations