Composing Using Heterogeneous Cellular Automata

  • Somnuk Phon-Amnuaisuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)


Music composition is a highly intelligent activity. Composers exploit a large number of possible patterns and creatively compose a new piece of music by weaving various patterns together in a musically intelligent manner. Many researchers have investigated algorithmic compositions and realised the limitations of knowledge elicitation and knowledge exploitation in a given representation/computation paradigm. This paper discusses the applications of heterogeneous cellular automata (hetCA) in generating chorale melodies and Bach chorales harmonisation. We explore the machine learning approach in learning rewrite-rules of cellular automata. Rewrite-rules are learned from music examples using a time-delay neural network. After the hetCA has successfully learned musical patterns from examples, new compositions are generated from the hetCA model.


Composing by heterogeneous cellular automata Dynamic neural networks Automatic music generation Chorales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allan, M., Williams, C.K.: Harmonising chorales by probabilistic inference. In: Saul, K.L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17. MIT Press, CambridgeGoogle Scholar
  2. 2.
    Burraston, D., Edmons, E.: Cellular automata in generative electronic music and sonic art: Historical and technical review. Digital Creativity 16(3), 165–185 (2005)CrossRefGoogle Scholar
  3. 3.
    Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. Journal of New Music Research 24, 51–73 (1995)CrossRefGoogle Scholar
  4. 4.
    Cope, D.: Computer and Musical Style. Oxford University Press, Oxford (1991)Google Scholar
  5. 5.
    Cope, D.: Virtual Music: Computer Synthesis of Musical Style. MIT Press, Cambridge (2001)Google Scholar
  6. 6.
    Ebcioglu, K.: An expert system for harmonizing four-part chorales. In: Balaban, M., Ebcioglu, K., Laske, O. (eds.) Understanding Music with AI: Perspectives on music cognition, ch. 12, pp. 294–333. AAAI Press/MIT Press,Google Scholar
  7. 7.
    Fry, C.: Flavors Band: A language for specifying musical style. In: Schwanauer, S.M., Levitt, D.A. (eds.) Machine Models of Music, ch. 19, pp. 426–451. MIT Press, CambridgeGoogle Scholar
  8. 8.
    Gartland-Jones, A., Copley, P.: The suitability of genetic algorithms for musical composition. Contemporary Music Review 22(3), 43–55 (2003)CrossRefGoogle Scholar
  9. 9.
    Hild, H., Feulner, J., Menzel, W.: HARMONET: A neural net for harmonizing chorales in the style of J.S. Bach. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (eds.) Advances in Neural Information Processing, vol. 4, pp. 267–274. Morgan Kaufman, San Francisco (1991)Google Scholar
  10. 10.
    Horner, A., Goldberg, D.E.: Genetic algorithms and computer-assisted music composition. In: Belew, R., Booker, L. (eds.) Proceedings of The Fourth International Conference on Genetic Algorithms. Morgan Kauffman, San Francisco (1991)Google Scholar
  11. 11.
    McAlpine, K., Miranda, E., Hoggar, S.: Making music with algorithm: A case study. Computer Music Journal 23(2), 19–30 (1999)CrossRefGoogle Scholar
  12. 12.
    Miranda, E.R.: Cellular automata music: An interdisciplinary project. Interface 22(1), 3–21 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mozer, M.C.: Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. In: Griffith, N., Todd, P.M. (eds.) Music Networks: Parallel Distributed Perception and Performance. MIT Press, Bradford Book (1999)Google Scholar
  14. 14.
    Oliwa, T., Wagner, M.: Composing Music with Neural Networks and Probabilistic Finite-State Machines. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 503–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Phon-Amnuaisuk, S.: Control language for harmonisation process. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS, vol. 2445, p. 155. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Riemenschneider, A.: 371 Harmonized Chorales and 69 Chorale Melodies with Figured Bass. G. Schirmer, Inc. (1941)Google Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Somnuk Phon-Amnuaisuk
    • 1
  1. 1.Music Informatics Research GroupMultimedia University, Jln MultimediaCyberjayaMalaysia

Personalised recommendations