The Evolution of Evolutionary Software: Intelligent Rhythm Generation in Kinetic Engine

  • Arne Eigenfeldt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)


This paper presents an evolutionary music system that generates complex rhythmic polyphony in performance. A population of rhythms is derived from analysis of source material, using a first order Markov chain derived from subdivision transitions. The population evolves in performance, and each generation is analysed to provide rules for subsequent generations.


Rhythm generation genetic algorithms recombinance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eigenfeldt, A.: Kinetic Engine: Toward an Intelligent Improvising Instrument. In: Proceedings of the Sound and Music Computing Conference, Marseille (2006)Google Scholar
  2. 2.
    Eigenfeldt, A.: Drum Circle: Intelligent Agents in Max/MSP. In: Proceedings of the International Computer Music Conference, Copenhagen (2007)Google Scholar
  3. 3.
    Eigenfeldt, A.: Multiagent Modeling of Complex Rhythmic Interactions in Realtime Performance. In: Sounds of Artificial Life: Breeding Music with Digital Biology, A-R Editions (2008)Google Scholar
  4. 4.
    Biles, J.A.: GenJam: A Genetic Algorithm for Generating Jazz Solos. In: Proceedings of the International Computer Music Conference, San Francisco (1994)Google Scholar
  5. 5.
    Biles, J.A.: Autonomous GenJam: Eliminating the Fitness Bottleneck by Eliminating Fitness. In: Proceedings of the Genetic and Evolutionary Computation Conference Workshop Program, San Francisco (2001)Google Scholar
  6. 6.
    Martins, J., Miranda, E.R.: Emergent rhythmic phrases in an A-Life environment. In: Proceedings of ECAL Workshop on Music and Artificial Life, Lisbon (2007) Google Scholar
  7. 7.
    Chadabe, J.: Interactive Composing. Computer Music Journal 8 (1984)Google Scholar
  8. 8.
    Eigenfeldt, A.: Intelligent Realtime Composition (2008),
  9. 9.
    Cope, D.: Experiments in Musical Intelligence. Middleton, A-R Editions (1996)Google Scholar
  10. 10.
    Martins, J., Miranda, E.R.: A connectionist architecture for the evolution of rhythms. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 696–706. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Alfonseca, M., Cebrian, M., Ortega, A.: A simple genetic algorithm for music generation by means of algorithmic information theory. In: IEEE Congress on Evolutionary Computation, CEC 2007 (2007)Google Scholar
  12. 12.
    Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., Romero, J.: A Corpus- based Hybrid Approach to Music Analysis and Composition. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007), Vancouver (2007)Google Scholar
  13. 13.
    Weinberg, G., Godfrey, M., Rae, A., Rhoads, J.: A Real-Time Genetic Algorithm in Human-Robot Musical Improvisation. In: Computer Music Modeling and Retrieval, Sense of Sounds. Springer, Berlin (2008)Google Scholar
  14. 14.
    Waschka, R.: Composing with Genetic Algorithms: GenDash. In: Evolutionary Computer Music. Springer, London (2007)Google Scholar
  15. 15.
    Eigenfeldt, A.: Realtime Composition or Computer Improvisation - A Composer’s Search for Intelligent Tools in Interactive Computer Music (2007),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arne Eigenfeldt
    • 1
  1. 1.School for the Contemporary ArtsSimon Fraser UniversityBurnabyCanada

Personalised recommendations