Advertisement

Decay of Invincible Clusters of Cooperators in the Evolutionary Prisoner’s Dilemma Game

  • Ching King Chan
  • Kwok Yip Szeto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)

Abstract

Two types of invincible clusters of cooperators are defined in the one-dimensional evolutionary Prisoner’s Dilemma game. These invincible clusters can either be peaceful or aggressive. The survival of these invincible clusters is discussed in the context of the repeated Prisoner’s Dilemma game with imitation and asynchronous updating procedure. The decay rates for these two types of clusters are analyzed numerically, for all enumeration of the configuration for small chain size. We find characteristic difference in the decay patterns of these two types of invincible clusters. The peaceful invincible clusters experience monotonic exponential decay, while the aggressive ones shows an interesting minimum in the density of cooperators before going through a slow exponential decay at long time. A heuristic argument for the existence of the minima is provided.

Keywords

Evolutionary Game Invasion Front Simple Ring Regular Random Graph Auxiliary Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Neumann, J., Morgenstern, O.: Theory of games and economic behaviour. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  2. 2.
    Szabó, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446, 97 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Puzzo, M.L.R., Albano, E.V.: The damage spreading method in monte carlo simulations: A brief overview and applications to confined magnetic materials. Comm. Comp. Phys. 4, 207–230 (2008)Google Scholar
  4. 4.
    Vazquez, F., Eguiluz, V.M., Miguel, M.S.: Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100, 108702 (2008)CrossRefGoogle Scholar
  5. 5.
    Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)CrossRefzbMATHGoogle Scholar
  6. 6.
    Smith, J.M.: Evolution and the theory of games. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006)CrossRefGoogle Scholar
  8. 8.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)CrossRefGoogle Scholar
  9. 9.
    Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)zbMATHGoogle Scholar
  10. 10.
    Nowak, M.A.: Evolutionary dynamics. Harvard University Press, Cambridge (2006)zbMATHGoogle Scholar
  11. 11.
    Nowak, M.A., Bonhoeffer, S., May, R.M.: Spatial games and the maintenance of cooperation. P.N.A.S. USA 91, 4877–4881 (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  13. 13.
    Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. Bifurcat. Chaos 3, 35–78 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ohtsuki, H., Nowak, M.A.: The replicator equation on graphs. J. Theo. Bio. 243, 86–97 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004)CrossRefGoogle Scholar
  16. 16.
    Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005)CrossRefGoogle Scholar
  17. 17.
    Traulsen, A., Shoresh, N., Nowak, M.A.: Analytical results for individual and group selection of any intensity. B. Math. Biol. 70, 1410–1424 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science 303, 793–799 (2004)CrossRefGoogle Scholar
  19. 19.
    Langer, P., Nowak, M.A., Hauert, C.: Spatial invasion of cooperation. J. Theo. Bio. 250, 634–641 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nowak, M.A., Ohtsuki, H.: Prevolutionary dynamics and the origin of evolution. P.N.A.S. USA (to appear, 2008)Google Scholar
  21. 21.
    Ohtsuki, H., Nowak, M.A.: Evolutionary stability on graphs. J. Theo. Bio. 251, 698–707 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pacheco, J., Traulsen, A., Ohtsuki, H., Nowak, M.A.: Repeated games and direct reciprocity under active linking. J. Theo. Bio. 250, 723–731 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pusch, A., Weber, S., Porto, M.: Impact of topology on the dynamical organization of cooperation in the prisoner’s dilemma game. Phys. Rev. E 77, 036120 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Suzuki, R., Kato, M., Arita, T.: Cyclic coevolution of cooperative behaviors and network structures. Phys. Rev. E 77, 021911 (2008)CrossRefGoogle Scholar
  25. 25.
    Perc, M., Szolnoki, A.: Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game. Phys. Rev. E 77, 011904 (2008)CrossRefGoogle Scholar
  26. 26.
    Tanimoto, J.: Dilemma solving by the coevolution of networks and strategy in a 2×2 game. Phys. Rev. E 76, 021126 (2007)CrossRefGoogle Scholar
  27. 27.
    Wu, Z.X., Wang, Y.-H.: Cooperation enhanced by the difference between interaction and learning neighborhoods for evolutionary spatial prisoner’s dilemma games. Phys. Rev. E 75, 041114 (2007)CrossRefGoogle Scholar
  28. 28.
    Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Phys. Rev. Lett. 98, 108103 (2007)CrossRefGoogle Scholar
  29. 29.
    Perc, M.: Transition from gaussian to levy distributions of stochastic payoff variations in the spatial prisoner’s dilemma game. Phys. Rev. Lett. 98, 108103 (2007)CrossRefGoogle Scholar
  30. 30.
    Wu, Z.X., Xu, X.J., Huang, Z.G., Wang, S.J., Wang, Y.H.: Evolutionary prisoner’s dilemma game with dynamic preferential selection. Phys. Rev. E 74, 021107 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Vukov, J., Szabó, G., Szolnoki, A.: Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs. Phys. Rev. E 73, 067103 (2006)CrossRefGoogle Scholar
  32. 32.
    Zimmermann, M.G., Eguíluz, V.M.: Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local interactions. Phys. Rev. E 72, 056118 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Vukov, J., Szabó, G.: Evolutionary prisoner’s dilemma game on hierarchical lattices. Phys. Rev. E 71, 036133 (2005)CrossRefGoogle Scholar
  34. 34.
    Ariosa, D., Fort, H.: Extended estimator approach for 2×2 games and its mapping to the ising hamiltonian. Phys. Rev. E 71, 036133 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Frean, M.R., Abraham, E.R.: Adaptation and enslavement in endosymbiont-host associations. Phys. Rev. E 69, 051913 (2004)CrossRefGoogle Scholar
  36. 36.
    Fort, H., Viola, S.: Self-organization in a simple model of adaptive agents playing 2×2 games with arbitrary payoff matrices. Phys. Rev. E 69, 036110 (2004)CrossRefGoogle Scholar
  37. 37.
    Szabó, G., Vukov, J.: Cooperation for volunteering and partially random partnerships. Phys. Rev. E 69, 036107 (2004)CrossRefGoogle Scholar
  38. 38.
    Holme, P., Trusina, A., Kim, B.J., Minnhagen, P.: Prisoners’ dilemma in real-world acquaintance networks: Spikes and quasiequilibria induced by the interplay between structure and dynamics. Phys. Rev. E 68, 030901 (2003)CrossRefGoogle Scholar
  39. 39.
    Fort, H.: Cooperation and self-regulation in a model of agents playing different games. Phys. Rev. E 66, 062903 (2002)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Szabó, G., Hauert, C.: Evolutionary prisoner’s dilemma games with voluntary participation. Phys. Rev. E 66, 062903 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ebel, H., Bornholdt, S.: Coevolutionary games on networks. Phys. Rev. E 66, 056118 (2002)CrossRefGoogle Scholar
  42. 42.
    Lim, Y.F., Chen, K., Jayaprakash, C.: Scale-invariant behavior in a spatial game of prisoners’ dilemma. Phys. Rev. E 65, 026134 (2002)CrossRefGoogle Scholar
  43. 43.
    Tomochi, M., Kono, M.: Spatial prisoner’s dilemma games with dynamic payoff matrices. Phys. Rev. E 65, 026112 (2002)CrossRefGoogle Scholar
  44. 44.
    Vainstein, M.H., Arenzon, J.J.: Disordered environments in spatial games. Phys. Rev. E 64, 051905 (2001)CrossRefGoogle Scholar
  45. 45.
    Abramson, G., Kuperman, M.: Social games in a social network. Phys. Rev. E 63, 030901 (2001)CrossRefGoogle Scholar
  46. 46.
    Szabó, G., Antal, T., Szabó, P., Droz, M.: Spatial evolutionary prisoner’s dilemma game with three strategies and external constraints. Phys. Rev. E 62, 1095 (2000)CrossRefGoogle Scholar
  47. 47.
    Szabó, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys. Rev. E 72, 047107 (2005)CrossRefGoogle Scholar
  48. 48.
    Brzezniak, Z., Zastawniak, T.: Basic stochastic processes. Springer, Heidelberg (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ching King Chan
    • 1
  • Kwok Yip Szeto
    • 1
  1. 1.Department of PhysicsHong Kong University of Science and TechnologyHong KongChina

Personalised recommendations