Advertisement

Soft Computing Techniques for Internet Backbone Traffic Anomaly Detection

  • Antonia Azzini
  • Matteo De Felice
  • Sandro Meloni
  • Andrea G. B. Tettamanzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5484)

Abstract

The detection of anomalies and faults is a fundamental task for different fields, especially in real cases like LAN networks and the Internet. We present an experimental study of anomaly detection on a simulated Internet backbone network based on neural networks, particle swarms, and artificial immune systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balachandran, S., Dasgupta, D., Nino, F., Garrett, D.: A framework for evolving multi-shaped detectors in negative selection. In: Proc. of IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007, pp. 401–408 (2007)Google Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  3. 3.
    Bouvry, P., Seredynsky, F.: Anomaly detection in TCP/IP networks using immune systems paradigm. Computer Comm. 30, 740–749 (2007)CrossRefGoogle Scholar
  4. 4.
    Dasgupta, D., Ji, Z.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    De Castro, N.L., von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  6. 6.
    De Castro, N.L., von Zuben, F.J.: Immune and neural network models: Theoretical and empirical comparisons. Int. Journal on Computational Intelligent Applications 1(3), 239–257 (2001)CrossRefGoogle Scholar
  7. 7.
    Dreyfus, G.: Neural networks, methodology and applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  8. 8.
    Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proc. of the IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, pp. 202–212 (1994)Google Scholar
  9. 9.
    Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Sustems for Data Mining. Trans. on Evolutionary Computation 11(4) (August 2007)Google Scholar
  10. 10.
    Gao, X.Z., Ovaska, S.J., Wang, X., Chow, M.Y.: A neural networks-based negative selection algorithm in fault diagnosis. Neural Computing & Applications 17, 91–98 (2007)CrossRefGoogle Scholar
  11. 11.
    Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks: Characterization and implications for cdns and web sites. In: Proc. of. WWW 2002, Hawaii (May 2002)Google Scholar
  12. 12.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE International Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)Google Scholar
  13. 13.
    Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune system approaches to intrusion detection - a review. Natural Computing 6, 413–466 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Antonia Azzini
    • 1
  • Matteo De Felice
    • 2
    • 3
  • Sandro Meloni
    • 3
  • Andrea G. B. Tettamanzi
    • 1
  1. 1.Information Technology DepartmentUniversity of MilanItaly
  2. 2.ENEA (Italian Energy New Technology and Environment Agency)Italy
  3. 3.Department of Informatics and AutomationUniversity of Rome “Roma Tre”Italy

Personalised recommendations