In front of unsuccessful models and simulations, we suggest that reductionist and emergentist attitudes may make it harder to detect ill-conceived modeling ontology and subsequent epistemological dead-ends. We argue that some high-level phenomena just cannot be explained and reconstructed from unsufficiently informative lower levels. This eventually requires a fundamental viewpoint change in not only low-level dynamics but also in the design of low-level objects themselves, considering distinct levels of description as just distinct observations on a single process.


Modeling Methodology Reconstruction Emergence Downward Causation Complex Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, P.: More is different. Science 177, 393–396 (1972)CrossRefGoogle Scholar
  2. 2.
    Bedau, M.A.: Weak emergence. In: Tomberlin, J. (ed.) Philosophical perspectives: Mind, causation, and world, vol. 11, pp. 375–399. Malden, Blackwell (1997)Google Scholar
  3. 3.
    Bitbol, M.: Ontology, matter and emergence. Phenomenology and the cognitive science (to appear, 2006)Google Scholar
  4. 4.
    Bonabeau, E., Dessalles, J.-L.: Detection and emergence. Intellectica 25(2), 85–94 (1997)Google Scholar
  5. 5.
    Campbell, D.T.: Downward causation. In: Ayala, F., Dobzhansky, T. (eds.) Hierarchically Organized Biological Systems. Studies in the philosophy of biology, pp. 179–186. Macmillan Press, Basingstoke (1974)Google Scholar
  6. 6.
    Clark, A.: Emergence and Explanation. In: Being there: Putting brain, body, and world together again, ch. 6, pp. 103–128. MIT Press, Cambridge (1996)Google Scholar
  7. 7.
    Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induction. Physica D 75, 11–54 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Deroian, F.: Formation of social networks and diffusion of innovations. Research policy 31, 835–846 (2002)CrossRefGoogle Scholar
  9. 9.
    Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Nature 431, 789–795 (2004)CrossRefGoogle Scholar
  10. 10.
    Emmeche, C., Koppe, S., Stjernfelt, F.: Levels, emergence, and three versions of downward causation. In: Andersen, P.B., Emmeche, C., Finnemann, N.O., Christiansen, P.V. (eds.) Downward causation. Minds, bodies and matter, pp. 13–34. Aarhus University Press, Aarhus (2000)Google Scholar
  11. 11.
    Epstein, J.M.: Remarks on the foundations of agent-based generative social science. Tech. rept. 00506024. Santa Fe Institute (2005)Google Scholar
  12. 12.
    Gershenson, C., Heylighen, F.: When can we call a system self-organizing? In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 606–614. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Humphreys, P.: Emergence, not supervenience. Philosophy of science 64, S337–S345 (1997)CrossRefGoogle Scholar
  14. 14.
    Hüttemann, A.: Explanation, emergence, and quantum entanglement. Philosophy of science 72(1), 114–127 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kim, J.: Mind in a physical world. MIT Press, Cambridge (1998)Google Scholar
  16. 16.
    Kim, J.: Making sense of emergence. Philosophical studies 95, 3–36 (1999)CrossRefGoogle Scholar
  17. 17.
    Küppers, G., Lenhard, J.: Validation of simulation: Patterns in the social and natural sciences. Journal of artificial societies and social simulation 8(4) (2005),
  18. 18.
    Lane, D.A.: Hierarchy, complexity, society. In: Hierarchy in natural and social sciences. Methodos Series, vol. 3. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Laughlin, R.B., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P.: The middle way. PNAS 97(1), 32–37 (2000)CrossRefGoogle Scholar
  20. 20.
    McGregor, S., Fernando, C.: Levels of description: A novel approach to dynamical hierarchies. Artificial life 11(4), 459–472 (2005)CrossRefGoogle Scholar
  21. 21.
    Nilsson-Jacobi, M.: Hierarchical organization in smooth dynamical systems. Artificial life 11(4), 493–512 (2005)CrossRefGoogle Scholar
  22. 22.
    Pfrieger, F.W., Barres, B.A.: New views on synapse-glia interactions. Current opinion in neurobiology 6, 615–621 (1996)CrossRefGoogle Scholar
  23. 23.
    Pumain, D.: Scaling laws and urban systems. SFI Working Paper 04-02-002 (2004)Google Scholar
  24. 24.
    Roth, C.: Empiricism for descriptive social network models. Physica A 378(1), 53–58 (2007)CrossRefGoogle Scholar
  25. 25.
    Rueger, A.: Robust supervenience and emergence. Philosophy of science 67(3), 466–489 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shalizi, C.R.: Causal architecture, complexity and self-organization in time series and cellular automata, ch. 11. Ph.D. thesis, University of Wisconsin at Madison, U.S.A. (2001)Google Scholar
  27. 27.
    Shalizi, C.R., Shalizi, K.R.: Blind construction of optimal non-linear recursive predictors for discrete sequences. In: Chickering, M., Halpern, J. (eds.) Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 504–511 (2004)Google Scholar
  28. 28.
    Turner, H., Stepney, S.: Rule migration: Exploring a design framework for modelling emergence in CA-like systems. In: ECAL Workshop on Unconventional Computing (2005) (to appear in International Journal of Unconventional Computing)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Camille Roth
    • 1
    • 2
  1. 1.Centre d’Analyse et de Mathématique Sociales CNRS/EHESSParisFrance
  2. 2.CREA Ecole Polytechnique/CNRS 1ParisFrance

Personalised recommendations