Real-Time Approaches for Model-Based PIV and Visual Fluid Analysis

  • Polina Kondratieva
  • Kai Bürger
  • Joachim Georgii
  • Rüdiger Westermann
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 106)

Abstract

In this research project, approaches for the reliable reconstruction of flow fields from captured particle images and their visualization have been developed. One aspect has been on developing techniques that can generate a velocity field that is consistent with a selected physical fluid model. Therefore, we have introduced a model-based approach that integrates a priori knowledge of this model into the reconstruction process. Another aspect has been on the design of techniques that are capable of dealing with real-time constraints, and which thus have the potential to be used in combination with high-speed camera systems to interactively steer the reconstruction process. Programmable graphics hardware has been exploited as a co-processor for numerical computations to achieve interactivity, both for the reconstruction and visualization of generated fields. All these techniques have been verified in an experiment on living microorganisms. In the last phase of the project we have focused on the extension of the techniques towards the processing of 3D particle images and the visualization of the reconstructed flow fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bürger, K., Schneider, J., Kondratieva, P., Krüger, J., Westermann, R.: Interactive visual exploration of instationary 3D-flows. In: Eurographics/IEEE VGTC Symposium on Visualization (EuroVis) (2007)Google Scholar
  2. 2.
    Bürger, K., Kondratieva, P., Krüger, J., Westermann, R.: Importance-driven particle techniques for flow visualization. In: Proceedings of IEEE VGTC Pacific Visualization Symposium (2008)Google Scholar
  3. 3.
    Corpetti, T., Mémin, E., Pérez, P.: Estimating fluid optical flow. In: 15th Int. Conf. Pattern Recognition, vol. 3, pp. 1045–1048 (2000)Google Scholar
  4. 4.
    Corpetti, T., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40(1), 80–97 (2005)CrossRefGoogle Scholar
  5. 5.
    Gupta, S., Prince, J.: Stochastic models for div-curl optical flow methods. Signal Proc. Lett. 3(2), 32–34 (1996)CrossRefGoogle Scholar
  6. 6.
    Hackbusch, W.: Iterative Solutions of Large Sparse Systems of Equations. Springer, New York (1994)Google Scholar
  7. 7.
    Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)CrossRefGoogle Scholar
  8. 8.
    Kalmoun, E.M., Rüde, U.: A variational multigrid for computing the optical flow. In: Vision, Modeling, and Visualization Conference, pp. 577–584 (2003)Google Scholar
  9. 9.
    Kondratieva, P., Georgii, J., Westermann, R.: Echtzeitverfahren zur modellbasierten rekonstruktion von strömungsfeldern aus experimentell bestimmten partikelsequenzen. In: 14. GALA Fachtagung, Lasermethoden in der Strömungsmesstechnik (2006)Google Scholar
  10. 10.
    Kondratieva, P., Georgii, J., Petermeier, H., Kowalczyk, W., Delgado, A., Westermann, R.: A real-time model-based approach for the reconstruction of fluid flows induced by microorganisms. Experiments in Fluids 45(2), 203–222 (2008)CrossRefGoogle Scholar
  11. 11.
    Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Transactions on Graphics 22(3), 908–916 (2003)CrossRefGoogle Scholar
  12. 12.
    Krüger, J., Kipfer, P., Kondratieva, P., Westermann, R.: A particle system for interactive visualization of 3D flows. IEEE Transactions on Visualization and Computer Graphics 11(6), 744–756 (2005)CrossRefGoogle Scholar
  13. 13.
    Mémin, E., Pérez, P.: A multigrid approach for hierarchical motion estimation. In: International Conference on Computer Vision, pp. 933–938 (1998)Google Scholar
  14. 14.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford university press, New York (2004)MATHGoogle Scholar
  15. 15.
    Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K., Torii, S.: Physics-based flow estimation of fluids. Pattern Recognition 36(5), 1203–1212 (2003)CrossRefGoogle Scholar
  16. 16.
    Nobach, H., Ouellette, N.T., Bodenschatz, E., Tropea, C.: Full-field correlation-based image processing for PIV. In: 6th International Symposium on Particle Image Velocimetry (2005)Google Scholar
  17. 17.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In: Computer Graphics Forum, vol. 26, pp. 80–113 (2007)Google Scholar
  18. 18.
    Petermeier, H., Delgado, A., Kondratieva, P., Westermann, R., Holtmann, F., Krishnamachari, V., Denz, C.: A hybrid approach between experiment and evaluation for artefact detection and flow field reconstruction. In: 12th International Symposium on Flow Visualization (2006)Google Scholar
  19. 19.
    Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum 22(4), 775–792 (2003)CrossRefGoogle Scholar
  20. 20.
    Quenot, G.M., Pakleza, J.D., Kowalewski, T.A.: Particle image velocimetry with optical flow. Exp. Fluids 25(3), 177–189 (1998)CrossRefGoogle Scholar
  21. 21.
    Raffel, M., Willert, C.E., Kompenhans, J.: Particle image velocimetry: A practical guide, 2nd edn. Springer, Heidelberg (2001)Google Scholar
  22. 22.
    Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: An imaging-based control approach. Exp. Fluids 42(1), 61–78 (2007)CrossRefGoogle Scholar
  23. 23.
    Ruhnau, P., Kohlberger, T., Schnörr, C., Nobach, H.: Variational optical flow estimation for particle image velocimetry. Exp. Fluids 38(1), 21–32 (2005)CrossRefGoogle Scholar
  24. 24.
    Scarano, F.: Iterative image deformation methods in PIV. Meas. Sci. and Technol. 13(1), R1–R19 (2002)CrossRefGoogle Scholar
  25. 25.
    Schiwietz, T., Westermann, R.: Gpu-piv. In: Vision, Modeling and Visualization 2004 (2004)Google Scholar
  26. 26.
    Westerweel, J.: Digital particle image velocimetry: Theory and application. PhD thesis, Delft University of Technology (1993)Google Scholar
  27. 27.
    Willert, C., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Polina Kondratieva
    • 1
  • Kai Bürger
    • 1
  • Joachim Georgii
    • 1
  • Rüdiger Westermann
    • 1
  1. 1.Computer Graphics & Visualization GroupTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations