The Wall-PIV Measurement Technique for Near Wall Flow Fields in Biofluid Mechanics

  • André Berthe
  • Daniel Kondermann
  • Christoph Garbe
  • Klaus Affeld
  • Bernd Jähne
  • Ulrich Kertzscher
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 106)


This chapter describes the development of a new time resolved 3D PIV technique for near wall flow field measurements. This measurement technique, called wall-PIV, is based on Beer-Lambert’s law. It substitutes the classical PIV laser sheet by a diffuse, monochromatic full-field illumination that is limited to the near wall region by an absorbing molecular dye in the fluid. Aimed range of applications is the investigation of flow fields next to one- or two dimensionally curved, possibly flexing surfaces. The three dimensional three component flow estimation uses a new optical flow algorithm, based on particle trajectories. Results of the measurement technique’s application on a displacement pediatric blood pump are presented.


Particle Image Velocimetry Wall Shear Stress Wall Shear Rate Tomographic Particle Image Velocimetry Wall Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, C.H., Dillon-Gibbons, C.J., Herpin, S., Soria, J.: Reconstruction techniques for tomographic piv (tomo-piv) of a turbulent boundary layer. In: Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2008)Google Scholar
  2. 2.
    Berthe, A., Christensen, C., Debaene, P., Goubergrits, L., Kertzscher, U., Affeld, K.: Further development of an image-based optical measurement technique for complex near-wall flows. In: The 12th International Symposium on Flow Visualization, Goettingen, Germany (2006)Google Scholar
  3. 3.
    Berthe, A., Kondermann, D., Christensen, C., Goubergrits, L., Kertzscher, U.: Using single particles for the validation of a 3d-3c near wall measurement technique. In: The 7th International Symposium Particle Image Velocimetry, Rome, Italy (2007)Google Scholar
  4. 4.
    Debaene, P., Kertzscher, U., Goubergrits, L., Affeld, K.: Visualization of a wall shear flow: Development of a new particle image interrogation method. J. Visual-Japan 8, 285–364 (2005)CrossRefGoogle Scholar
  5. 5.
    Dintenfass, L.: Blood Microrheology – Viscosity Factors in Blood Flow, Ischaemia and Thrombosis. Butterworths, London (1971)Google Scholar
  6. 6.
    Elsinga, G., Scarano, F., Wieneke, B., van Oudheusden, B.: Tomographic particle image velocimetry. Experiments in Fluids 41(6), 933–947 (2006)CrossRefGoogle Scholar
  7. 7.
    Ethier, C.R., Steinman, D.A.: Exact fully 3D navier-stokes solutions for benchmarking. International Journal for Numerical Methods in Fluids 19(5), 369–375 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Geigy, J. (ed.): Documenta Geigy, Wissenschaftliche Tabellen, 6th edn. Geigy (1960)Google Scholar
  9. 9.
    Haussecker, H., Fleet, D.: Computing optical flow with physical models of brightness variation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 23(6), 661–673 (2001)CrossRefGoogle Scholar
  10. 10.
    Hill, D., Troolin, D., Walters, G., Lai, W., Sharp, K.: Volumetric 3-component velocimetry (v3v) measurements of the turbulent flow in stirred tank reactors. In: Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2008)Google Scholar
  11. 11.
    Hinsch, K.D.: Holographic particle image velocimetry. Measurement Science and Technology 13(7), R61–R72 (2002)CrossRefGoogle Scholar
  12. 12.
    Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  13. 13.
    Hui, W.H.: Exact solutions of the unsteady two-dimensional navier-stokes equations. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 38(5), 689–702 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jehle, M.: Spatio-temporal analysis of flows close to free water surfaces. PhD thesis, University of Heidelberg (2006)Google Scholar
  15. 15.
    Jehle, M., Jähne, B.: A novel method for three-dimensional three-component analysis of flows close to free water surfaces. Experiments in Fluids 44(3), 469–480 (2008)CrossRefGoogle Scholar
  16. 16.
    Jehle, M., Jähne, B., Kertzscher, U.: Direct estimation of the wall shear rate using parametric motion models in 3D. Pattern Recognition, 434–443 (2006)Google Scholar
  17. 17.
    Kertzscher, U., Debaene, P., Goubergrits, L., Affeld, K.: Experimental assessment of wall shear flow. In: Kowalewski, T. (ed.) Abiomed Lecture Notes: Blood Flow, Modelling and Diagnostics, 6, Abiomed, Warschau, pp. 109–134 (2005)Google Scholar
  18. 18.
    Kertzscher, U., Berthe, A., Goubergrits, L., Affeld, K.: Particle image velocimetry of a flow at a vaulted wall. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 222(4), 465–473 (2008)CrossRefGoogle Scholar
  19. 19.
    Köhler, U., Marshall, I., Robertson, M.B., Long, Q., Xu, X.Y., Hoskins, P.R.: Mri measurement of wall shear stress vectors in bifurcation models and comparison with cfd predictions. Journal of Magnetic Resonance Imaging 14(5), 563–573 (2001)CrossRefGoogle Scholar
  20. 20.
    Kondermann, D., Kondermann, C., Berthe, A., Kertzscher, U., Garbe, C.: Motion estimation based on a temporal model of fluid flows. In: The 13th International Symposium on Flow Visualization, Nice, France (2008)Google Scholar
  21. 21.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision (darpa). In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121–130 (1981)Google Scholar
  22. 22.
    Michaelis, D., Wieneke, B.: Comparison between tomographic piv and stereo piv. In: Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2008)Google Scholar
  23. 23.
    Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: an imaging-based control approach. Experiments in Fluids 42(1), 61–78 (2007)CrossRefGoogle Scholar
  24. 24.
    Schroeder, A., Geisler, R., Elsinga, G., Scarano, F., Dierksheide, U.: Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic piv. Experiments in Fluids 44(2), 305–316 (2008)CrossRefGoogle Scholar
  25. 25.
    Subramanian, G., Brady, J.F.: Trajectory analysis for non-brownian inertial suspensions in simple shear flow. Journal Of Fluid Mechanics 559, 151–203 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • André Berthe
    • 1
  • Daniel Kondermann
    • 2
  • Christoph Garbe
    • 2
  • Klaus Affeld
    • 1
  • Bernd Jähne
    • 2
  • Ulrich Kertzscher
    • 1
  1. 1.Biofluid Mechanics LaboratoryCharité - Universitätsmedizin BerlinBerlin
  2. 2.Digital Image Processing Research Group, Heidelberg Collaboratory for Image ProcessingUniversity of HeidelbergHeidelberg 

Personalised recommendations