Simultaneous, Planar Determination of Fuel/Air Ratio and Velocity Field in Single Phase Mixture Formation Processes

  • Frank Rotter
  • Jochen Scholz
  • Jens Müller
  • Tim Wiersbinski
  • Markus Röhl
  • Paul Ruhnau
  • Daniel Kondermann
  • Christoph S. Garbe
  • Volker Beushausen
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 106)

Abstract

Laser induced fluorescence is used to develop a 2D measurement technique for mixture formation analysis of fuel and air in a broad temperature regime from 398 K up to 548 K. The measurement principle is called FARLIF (fuel-air ratio by laser-induced fluorescence). Its application is tested on the tracer toluene in the non-fluorescent model fuel isooctane as well as on an auto-fluorescing near-standard gasoline. A frequency quadrupled double-pulse Nd:YAG laser at 266 nm is used for excitation while the fluorescence is detected by an intensified double-frame CCD camera. The double-frame images are used for analysis of the mixture motion. For elevated temperatures the FARLIF signal shows a temperature dependence. Therefore, a correction mechanism is suggested.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drake, M.C., Haworth, D.C.: Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc. Combust. Inst. 31(1), 99–124 (2007)CrossRefGoogle Scholar
  2. 2.
    Reboux, J., Puechberty, D., Dionnet, F.: A new approach of PLIF applied to fuel/air ratio measurement in the compression stroke of an optical SI engine. SAE technical paper series, No. 941988 (1994)Google Scholar
  3. 3.
    Schulz, C., Sick, V.: Tracer-LIF Diagnostics: Quantitative Measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations. Prog. Energy Combustion Sci. 31, 75–121 (2005)CrossRefGoogle Scholar
  4. 4.
    Scholz, J., Röhl, M., Beushausen, V.: Mischungsfeldanalyse mit Fuel-Air-Ratio-LIF. Lasermethoden in der Strömungsmesstechnik, 13. Fachtagung der Deutschen Gesellschaft für Laser-Anemometrie GALA e.V., Cottbus, September 6-8 (2005)Google Scholar
  5. 5.
    Scholz, J., Röhl, M., Wiersbinski, T., Beushausen, V.: Verification and Application of Fuel-Air-Ratio-LIF. In: 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (2006)Google Scholar
  6. 6.
    Scholz, J., Wiersbinski, T., Beushausen, V.: Planare Fuel-Air-Ratio-LIF und PIV zur Gemischbildungsanalyse von Realkraftstoff. Lasermethoden in der Strömunsgsmesstechnik, 14. Fachtagung der Deuschen Gesellschaft für Laser-Anemometrie GALA e.V., Braunschweig, September 5-7 (2006).Google Scholar
  7. 7.
    Scholz, J., Röhl, M., Wiersbinski, T., Beushausen, V.: Planar Fuel-Air-Ratio-LIF with Gasoline. In: 12th International Symposium on Flow Visualization, Göttingen, September 10-14 (2006)Google Scholar
  8. 8.
    Scholz, J., Wiersbinski, T., Beushausen, V.: Kombination von FARLIF und PIV zur Gemischbildungsanalyse von Realkraftstoff. In: Leipertz, A. (ed.) Motorische Verbrennung – Aktuelle Probleme und moderne Lösungsansätze, Bericht zur Energie- und Verfahrenstechnik (BEV) 7.1, ESYTEC, Erlangen, pp. 291–302 (2007)Google Scholar
  9. 9.
    Scholz, J., Wiersbinski, T., Beushausen, V.: Planar Fuel-Air-Ratio-LIF with gasoline for dynamic mixture-formation investigations. SAE world congress, Detroit, USA (2007)Google Scholar
  10. 10.
    Scholz, J., Wiersbinski, T., Ruhnau, P., Kondermann, D., Hain, R., Beushausen, V.: Weiterentwicklung einer 2D Doppelpuls LIF Messtechnik mit Fluorescence Motion Analysis zur Untersuchung von Mischungsprozessen. Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung der Deutschen Gesellschaft für Laser-Anemometrie GALA e.V., Rostock, September 4-6 (2007)Google Scholar
  11. 11.
    Scholz, J., Wiersbinski, T., Ruhnau, P., Kondermann, D., Garbe, C.S., Hain, R., Beushausen, V.: Double-Pulse Planar-LIF Investigations using Fluorescence Motion Analysis for Mixture Formation Investigation. In: Proc. 7th International Symposium Particle Image Velocimetry, PIV 2007, Rome, Italy, September 11-14 (2007)Google Scholar
  12. 12.
    Scholz, J., Wierbinski, T., Beushausen, V.: Double-Pulse Planar Fuel/Air-Ratio Measurement by Laser-Induced Fluorescence. Journal of Visualization 10(3), 248 (2007)CrossRefGoogle Scholar
  13. 13.
    Garbe, C., Spies, H., Jähne, B.: Estimation of Surface Flow and Net Heat Flux from Infrared Image Sequences. Journal of Mathematical Imaging and Vision 19, 159–174 (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: An imaging based control approach. Exp. in Fluids 42(1), 61–78 (2007)CrossRefGoogle Scholar
  15. 15.
    Baranger, P., Orain, M., Grisch, F.: Fluorescence spectroscopy of kerosene vapour: application to gas turbines. In: 43rd AIAA Aerospace Sciences Meeting and Exhebit, Reno, Nevada, paper No 2005-828 (2005) Google Scholar
  16. 16.
    Rossow, B., Orain, M., Grisch: Eqivalence ratio measurement in kerosene-fuelled LPP injectors using kerosene planar laser-induced fluorescence. In: 12th International Symposium on Flow Visualisation, Göttingen, September 10-14 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Frank Rotter
    • 1
  • Jochen Scholz
    • 1
  • Jens Müller
    • 1
  • Tim Wiersbinski
    • 1
  • Markus Röhl
    • 1
  • Paul Ruhnau
    • 2
  • Daniel Kondermann
    • 3
  • Christoph S. Garbe
    • 3
  • Volker Beushausen
    • 1
  1. 1.Department of Photonic Sensor TechnologyLaser-Laboratorium Göttingen e.V.GöttingenGermany
  2. 2.Computer Vision, Graphics and Pattern Recognition GroupUniversity of MannheimMannheimGermany
  3. 3.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations