2D-Measurement Technique for Simultaneous Quantitative Determination of Mixing Ratio and Velocity Field in Microfluidic Applications

  • Volker Beushausen
  • Karsten Roetmann
  • Waldemar Schmunk
  • Mike Wellhausen
  • Christoph Garbe
  • Bernd Jähne
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 106)

Abstract

Two-dimensional Molecular-Tagging-Velocimetry (2D-MTV) has been used to investigate velocity fields of liquid flow in a micro mixer. Optical tagging was realized by using caged dye. For the first time patterns were generated by structured laser illumination using optical masks. This allows the generation of nearly any imaginable pattern. The flow induced deformation of the optically written pattern is tracked by imaging of laser induced fluorescence. Quantitative analysis of raw image series is carried out by novel “optical flow” based techniques. A comparison to the standard technique of μPIV has also been conducted. Additionally Planar Spontaneous Raman Scattering (PSRS) was applied in order to determine concentration fields for mixtures of ethanol and water.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erickson, D., Li, D.: Integrated microfluidic devices. Analytica Chimica Acta 507, 11–26 (2004), doi:10.1016/j.aca.2003.09.019CrossRefGoogle Scholar
  2. 2.
    Lai, S., Wang, S., Luo, J., Lee, L.J., Yang, S.T., Madou, M.J.: Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 76(7), 1832–1837 (2004), doi:10.1021/ac0348322CrossRefGoogle Scholar
  3. 3.
    Nguyen, N.T., Wu, Z.: Micromixers - a review. Journal of Micromechanics and Microengineering 15, R1–R16 (2005), doi:10.1088/0960-1317/15/2/R01CrossRefGoogle Scholar
  4. 4.
    Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)CrossRefGoogle Scholar
  5. 5.
    Mogensen, K.B., Klank, H., Kutter, J.P.: Recent developments in detection for microfluidic systems. Electrophoresis 25, 3498–3512 (2004), doi:10.1002/elps.200406108CrossRefGoogle Scholar
  6. 6.
    Sinton, D.: Microscale flow visualization. Microfluid Nanofluid 1, 2–21 (2004), doi:10.1007/s10404-004-0009-4CrossRefGoogle Scholar
  7. 7.
    Viskari, P.J., Landers, J.P.: Unconventional detection methods for microfluidic devices. Electrophoresis 27, 1797–1810 (2006), doi:10.1002/elps.200500565CrossRefGoogle Scholar
  8. 8.
    Koochesfahani, M.M., Nocera, D.G.: Molecular tagging velocimetry maps fluid flows. Laser Focus World 37(6), 103–108 (2001)Google Scholar
  9. 9.
    Lempert, W.R., Harris, S.R.: Flow tagging velocimetry using caged dye photo-activated fluorophores. Measurement Science and Technology 11, 1251–1258 (2000)CrossRefGoogle Scholar
  10. 10.
    Maynes, D., Webb, A.R.: Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Experiments in Fluids 32, 3–15 (2002), doi:10.1007/s003480100290CrossRefGoogle Scholar
  11. 11.
    Gee, K.R., Weinberg, E.S., Kozlowski, D.J.: Caged q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorg. Med. Chem. Lett. 11(16), 2181–2183 (2001)CrossRefGoogle Scholar
  12. 12.
    Garbe, C.S.: Measuring and modelling fluid dynamic processes using digital image sequence analysis. Habil. Ruprecht-Karls-Universität Heidelberg (2006)Google Scholar
  13. 13.
    Garbe, C.S., Roetmann, K., Beushausen, V., Jähne, B.: An optical flow MTV based technique for measuring micro fluidic flow in the presence of diffusion and Taylor dispersion. Experiments in Fluids 44(3), 350–439 (2008), doi:10.1007/s00348-007-0435-7CrossRefGoogle Scholar
  14. 14.
    Garbe, C.S., Roetmann, K., Jähne, B.: An optical flow based technique for the non-invasive measurement of microfluidic flows. In: 12th International Symposium on Flow Visualization, Goettingen, Germany, pp. 1–10 (2006)Google Scholar
  15. 15.
    Barron, J.L., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. International Journal of ComputerVision 12(1), 43–77 (1994)Google Scholar
  16. 16.
    Garbe, C.S., Spies, H., Jähne, B.: Estimation of surface flow and net heat flux from infrared image sequences. Journal of Mathematical Imaging and Vision 19, 159–174 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Haußecker, H., Fleet, D.: Computing optical flow with physical models of brightness variation. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 661–673 (2001)CrossRefGoogle Scholar
  18. 18.
    Jähne, B.: Digitale Bildverarbeitung, 6th edn. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Roetmann, K., Garbe, C., Beushausen, V.: 2D-molecular tagging velocimetry zur Analyse mikrofluidischer Stömungen. In: Proceedings Lasermethoden in der Strömungsmesstechnik, pp. 26/1–26/10 (2005)Google Scholar
  20. 20.
    Roetmann, K., Garbe, C., Schmunk, W., Beushausen, V.: Microflow analysis by molecular tagging velocimetry and planar ramanscattering. In: 12th International Symposium on FlowVisualization (2006)Google Scholar
  21. 21.
    Roetmann, K., Schmunk, W., Garbe, C., Beushausen, V.: Analyse mikrofluidischer Strömungen mit molecular tagging velocimetry und planarer Ramanstreuung. In: Proceedings Lasermethoden in der Strömungsmesstechnik, pp. 31/1–31/8 (2006)Google Scholar
  22. 22.
    Roetmann, K., Schmunk, W., Garbe, C.S., Beushausen, V.: Micro-flow analysis by molecular tagging velocimetry and planar Raman-scattering. Exp. Fluids 44, 419–430 (2008), doi:10.1007/s00348-007-0420-1CrossRefGoogle Scholar
  23. 23.
    Lee, M., Lee, J.P., Rhee, H., Choo, J., Chai, Y.G., Lee, E.K.: Applicability of laser-induced raman microscopy for in situ monitoring of imine formation in a glass microfluidic chip. Journal of Raman Spectroscopy 34, 737–742 (2003), doi:10.1002/jrs.1038CrossRefGoogle Scholar
  24. 24.
    Leung, S.A., Winkle, R.F., Wootton, R.C.R., de Mello, A.J.: A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online raman spectroscopic detection. The Analyst 130, 46–51 (2004), doi:10.1039/b412069hCrossRefGoogle Scholar
  25. 25.
    Wood, B.R., Langford, S.J., Cooke, B.M., Glenister, F.K., Lim, J., McNaughton, D.: Raman imaging of hemozoin within the food vacuole of plasmodium falciparum trophozoites. FEBS Letters 554, 247–252 (2003), doi:10.1016/S0014-5793(03)00975-XCrossRefGoogle Scholar
  26. 26.
    Malarski, A., Egermann, J., Zehnder, J., Leipertz, A.: Simultaneous application of single-shot ramanography and particle image velocimetry. Optics letters 31, 1005–1007 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Volker Beushausen
    • 1
  • Karsten Roetmann
    • 1
  • Waldemar Schmunk
    • 1
  • Mike Wellhausen
    • 1
  • Christoph Garbe
    • 2
  • Bernd Jähne
    • 2
  1. 1.Department of Photonic Sensor TechnologyLaser-Laboratorium Goettingen e.V.GoettingenGermany
  2. 2.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations