Advertisement

A Framework for Monitoring Control Updating Period in Real-Time NMPC Schemes

  • Mazen Alamir
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)

Abstract

In this contribution, a general scheme for on-line monitoring of the control updating period in real-time Nonlinear Model Predictive Control (NMPC) schemes is proposed. Such a scheme can be of a great interest when applying NMPC to systems with fast dynamics. The updating scheme is based on the on-line identification of generic models for both solver efficiency and disturbance effects on the optimal cost behavior. A simple example is used to illustrate the efficiency of the proposed methodology.

Keywords

Nonlinear Model Predictive Control Real-Time Implementation Fast Systems Updating Period Monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes: A Parametrized Approach for Fast Systems. LNCIS. Springer, London (2006)MATHGoogle Scholar
  2. 2.
    Alamir, M.: Nonlinear Receding Horizon sub-optimal Guidance Law for minimum interception time problem. Control Engineering Practice 9(1), 107–116 (2001)CrossRefGoogle Scholar
  3. 3.
    Alamir, M., Marchand, N.: Constrained Minimum-Time Oriented Feedback Control for the Stabilization of Nonholonomic Systems in Chained Form. Journal of Optimization Theory and Applications 118(2), 229–244 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    DeHaan, D., Guay, M.: Non-Convex optimization and robustness in realtime model predictive control. Internationl J. of Robust and Nonlinear Control 17, 1634–1650 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Diehl, M., Findeisein, R., Bock, H.G., Schlöder, J.P., Allgöwer, F.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. IEE Control Theory Appl. 152(3), 296–308 (2005)CrossRefGoogle Scholar
  6. 6.
    Diehl, M., Bock, H.G., Schlöder, J.P.: A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control. SIAM Journal on Control and Optimization 43(5), 1714–1736 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ohtsuka, T.: A Continuation/GMRES Method for Fast Computation of Nonlinear Receding Horizon Control. Automatica 40(4), 563–574 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mazen Alamir
    • 1
  1. 1.CNRS-GIPSALAB, Control Systems Department.University of GrenobleSaint Martin d’HèresFrance

Personalised recommendations