Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation

  • Moritz Diehl
  • Hans Joachim Ferreau
  • Niels Haverbeke
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)


This overview paper reviews numerical methods for solution of optimal control problems in real-time, as they arise in nonlinear model predictive control (NMPC) as well as in moving horizon estimation (MHE). In the first part, we review numerical optimal control solution methods, focussing exclusively on a discrete time setting. We discuss several algorithmic ”building blocks” that can be combined to a multitude of algorithms. We start by discussing the sequential and simultaneous approaches, the first leading to smaller, the second to more structured optimization problems. The two big families of Newton type optimization methods, Sequential Quadratic Programming (SQP) and Interior Point (IP) methods, are presented, and we discuss how to exploit the optimal control structure in the solution of the linear-quadratic subproblems, where the two major alternatives are “condensing” and band structure exploiting approaches. The second part of the paper discusses how the algorithms can be adapted to the real-time challenge of NMPC and MHE. We recall an important sensitivity result from parametric optimization, and show that a tangential solution predictor for online data can easily be generated in Newton type algorithms. We point out one important difference between SQP and IP methods: while both methods are able to generate the tangential predictor for fixed active sets, the SQP predictor even works across active set changes. We then classify many proposed real-time optimization approaches from the literature into the developed categories.


real-time optimization numerical optimal control Newton type methods structure exploitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bemporad, A., Borrelli, F., Morari, M.: Model predictive control based on linear programming - the explicit solution. IEEE Transactions on Automatic Control 47(12), 1974–1985 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)zbMATHGoogle Scholar
  3. 3.
    Biegler, L.T.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Computers and Chemical Engineering 8, 243–248 (1984)CrossRefGoogle Scholar
  4. 4.
    Biegler, L.T., Rawlings, J.B.: Optimization approaches to nonlinear model predictive control. In: Ray, W.H., Arkun, Y. (eds.) Proc. 4th International Conference on Chemical Process Control - CPC IV, pp. 543–571. AIChE, CACHE (1991)Google Scholar
  5. 5.
    Binder, T., Blank, L., Bock, H.G., Bulirsch, R., Dahmen, W., Diehl, M., Kronseder, T., Marquardt, W., Schlöder, J.P., Stryk, O.V.: Introduction to model based optimization of chemical processes on moving horizons. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems: State of the Art, pp. 295–340. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Bonner Mathematische Schriften, vol. 183. Universität Bonn, Bonn (1987)Google Scholar
  7. 7.
    Bock, H.G., Diehl, M., Kostina, E.A., Schlöder, J.P.: Constrained optimal feedback control of systems governed by large differential algebraic equations. In: Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, S.B. (eds.) Real-Time and Online PDE-Constrained Optimization, pp. 3–22. SIAM, Philadelphia (2007)Google Scholar
  8. 8.
    Bock, H.G., Diehl, M., Leineweber, D.B., Schlöder, J.P.: Efficient direct multiple shooting in nonlinear model predictive control. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II, vol. 2, pp. 218–227. Springer, Berlin (1999)Google Scholar
  9. 9.
    Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC World Congress Budapest, pp. 243–247. Pergamon Press, Oxford (1984)Google Scholar
  10. 10.
    Boyd, S., Vandenberghe, L.: Convex Optimization. University Press, Cambridge (2004)zbMATHGoogle Scholar
  11. 11.
    Bryson, A.E., Ho, Y.-C.: Applied Optimal Control. Wiley, New York (1975)Google Scholar
  12. 12.
    Büskens, C., Maurer, H.: Sqp-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. Journal of Computational and Applied Mathematics 120, 85–108 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Deuflhard, P.: Newton Methods for Nonlinear Problems. Springer, New York (2004)zbMATHGoogle Scholar
  14. 14.
    Diehl, M.: Real-Time Optimization for Large Scale Nonlinear Processes, VDI Verlag, Düsseldorf. Fortschr.-Ber. VDI Reihe 8, Meß-, Steuerungs- und Regelungstechnik, vol. 920 (2002),
  15. 15.
    Diehl, M., Bock, H.G., Schlöder, J.P.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimization 43(5), 1714–1736 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Proc. Contr. 12(4), 577–585 (2002)CrossRefGoogle Scholar
  17. 17.
    Diehl, M., Findeisen, R., Allgöwer, F.: A stabilizing real-time implementation of nonlinear model predictive control. In: Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, S.B. (eds.) Real-Time and Online PDE-Constrained Optimization, pp. 23–52. SIAM, Philadelphia (2007)Google Scholar
  18. 18.
    Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. IEE Proc.-Control Theory Appl. 152(3), 296–308 (2005)CrossRefGoogle Scholar
  19. 19.
    Diehl, M., Magni, L., De Nicolao, G.: Online NMPC of unstable periodic systems using approximate infinite horizon closed loop costing. Annual Reviews in Control 28, 37–45 (2004)Google Scholar
  20. 20.
    Diehl, M., Walther, A., Bock, H.G., Kostina, E.: An adjoint-based SQP algorithm with quasi-newton jacobian updates for inequality constrained optimization. Technical Report Preprint MATH-WR-02-2005, TU Dresden (2005)Google Scholar
  21. 21.
    Diehl, M., Kühl, P., Bock, H.G., Schlöder, J.P.: Schnelle algorithmen für die zustands- und parameterschätzung auf bewegten horizonten. Automatisierungstechnik 54(12), 602–613 (2006)CrossRefGoogle Scholar
  22. 22.
    Ferreau, H.J.: qpOASES User’s Manual (2007–2008),
  23. 23.
    Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of explicit MPC. International Journal of Robust and Nonlinear Control 18(8), 816–830 (2008)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Findeisen, R., Allgöwer, F.: Computational delay in nonlinear model predictive control. In: Proc. Int. Symp. Adv. Control of Chemical Processes, ADCHEM (2003)Google Scholar
  25. 25.
    Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)zbMATHGoogle Scholar
  26. 26.
    Franke, R.: Integrierte dynamische Modellierung und Optimierung von Systemen mit saisonaler Wärmespeicherung. PhD thesis, Technische Universität Ilmenau, Germany (1998)Google Scholar
  27. 27.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. Technical report, Numerical Analysis Report 97-2, Department of Mathematics, University of California, San Diego, La Jolla, CA (1997)Google Scholar
  28. 28.
    Gill, P.E., Murray, W., Wright, M.H.: Practical optimization. Academic Press, London (1999)Google Scholar
  29. 29.
    Glad, T., Johnson, H.: A method for state and control constrained linear-quadratic control problems. In: Proceedings of the 9th IFAC World Congress, Budapest, Hungary, pp. 1583–1587 (1984)Google Scholar
  30. 30.
    Griewank, A.: Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation. Frontiers in Appl. Math, vol. 19. SIAM, Philadelphia (2000)zbMATHGoogle Scholar
  31. 31.
    Griewank, A., Toint, P.L.: Partitioned variable metric updates for large structured optimization problems. Numerische Mathematik 39, 119–137 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Griewank, A., Walther, A.: On constrained optimization by adjoint based quasi-Newton methods. Optimization Methods and Software 17, 869–889 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Guddat, J., Guerra Vasquez, F., Jongen, H.T.: Parametric Optimization: Singularities, Pathfollowing and Jumps. Teubner, Stuttgart (1990)Google Scholar
  34. 34.
    Helbig, A., Abel, O., Marquardt, W.: Model predictive control for on-line optimization of semi-batch reactors. In: Proc. Amer. Contr. Conf, Philadelphia, pp. 1695–1699 (1998)Google Scholar
  35. 35.
    Jorgensen, J.B., Rawlings, J.B., Jorgensen, S.B.: Numerical methods for large-scale moving horizon estimation and control. In: Proceedings of Int. Symposium on Dynamics and Control Process Systems (DYCOPS) (2004)Google Scholar
  36. 36.
    Kang, W.: Moving horizon numerical observers of nonlinear control systems. IEEE Transactions on Automatic Control 51(2), 344–350 (2006)CrossRefGoogle Scholar
  37. 37.
    Krämer-Eis, P., Bock, H.G.: Numerical treatment of state and control constraints in the computation of feedback laws for nonlinear control problems. In: Deuflhard, P., et al. (eds.) Large Scale Scientific Computing, pp. 287–306. Birkhäuser, Basel (1987)Google Scholar
  38. 38.
    Kraus, T., Kühl, P., Wirsching, L., Bock, H.G., Diehl, M.: A moving horizon state estimation algorithm applied to the tennessee eastman benchmark process. In: Proc. of IEEE Robotics and Automation Society conference on Multisensor Fusion and Integration for Intelligent Systems (2006)Google Scholar
  39. 39.
    Leineweber, D.B., Bauer, I., Schäfer, A.A.S., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II). Computers and Chemical Engineering 27, 157–174 (2003)CrossRefGoogle Scholar
  40. 40.
    Li, W.C., Biegler, L.T.: Multistep, Newton-type control strategies for constrained nonlinear processes. Chem. Eng. Res. Des. 67, 562–577 (1989)Google Scholar
  41. 41.
    Li, W.C., Biegler, L.T.: Newton-type controllers for constrained nonlinear processes with uncertainty. Industrial and Engineering Chemistry Research 29, 1647–1657 (1990)CrossRefGoogle Scholar
  42. 42.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 26(6), 789–814 (2000)CrossRefMathSciNetGoogle Scholar
  43. 43.
    M’hamdi, A., Helbig, A., Abel, O., Marquardt, W.: Newton-type receding horizon control and state estimation. In: Proc. 13rd IFAC World Congress, San Francisco, pp. 121–126 (1996)Google Scholar
  44. 44.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)zbMATHCrossRefGoogle Scholar
  45. 45.
    Ohtsuka, T.: A continuation/gmres method for fast computation of nonlinear receding horizon control. Automatica 40(4), 563–574 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Ohtsuka, T., Fujii, H.A.: Nonlinear receding-horizon state estimation by real-time optimization technique. Journal of Guidance, Control, and Dynamics 19(4) (1996)Google Scholar
  47. 47.
    Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis, Dundee 1977. LNM, vol. 630, Springer, Berlin (1978)Google Scholar
  48. 48.
    Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations. IEEE Transactions on Automatic Control 48(2), 246–258 (2003)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Rao, C.V., Wright, S.J., Rawlings, J.B.: Application of interior-point methods to model predictive control. Journal of Optimization Theory and Applications 99, 723–757 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Sargent, R.W.H., Sullivan, G.R.: The development of an efficient optimal control package. In: Stoer, J. (ed.) Proceedings of the 8th IFIP Conference on Optimization Techniques, Springer, Heidelberg (1977) (Part 2, 1978)Google Scholar
  51. 51.
    Schäfer, A., Kühl, P., Diehl, M., Schlöder, J.P., Bock, H.G.: Fast reduced multiple shooting methods for nonlinear model predictive control. Chemical Engineering and Processing 46(11), 1200–1214 (2007)Google Scholar
  52. 52.
    Schäfer, A.A.S.: Efficient reduced Newton-type methods for solution of large-scale structured optimization problems with application to biological and chemical processes. PhD thesis, Universität Heidelberg (2005)Google Scholar
  53. 53.
    Schlöder, J.P.: Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung. Bonner Mathematische Schriften, vol. 187. Universität Bonn, Bonn (1988)Google Scholar
  54. 54.
    Shimizu, Y., Ohtsuka, T., Diehl, M.: A real-time algorithm for nonlinear receding horizon control using multiple shooting and continuation/krylov method. International Journal of Robust and Nonlinear Control (accepted ) (2008)Google Scholar
  55. 55.
    Soneda, Y., Ohtsuka, T.: Nonlinear moving horizon state estimation for a hovercraft with continuation/gmres method. In: Proc. of IEEE Conf. on Control Applications (2002)Google Scholar
  56. 56.
    Steinbach, M.C.: A structured interior point sqp method for nonlinear optimal control problems. In: Bulirsch, R., Kraft, D. (eds.) Computation Optimal Control, pp. 213–222. Birkhäuser, Basel (1994)Google Scholar
  57. 57.
    Tenny, M.J., Rawlings, J.B.: Efficient moving horizon estimation and nonlinear model predictive control. In: Proceedings of the American Control Conference, Anchorage, AK (2002)Google Scholar
  58. 58.
    Tenny, M.J., Wright, S.J., Rawlings, J.B.: Nonlinear model predictive control via feasibility-perturbed sequential quadratic programming. Computational Optimization and Applications 28(1), 87–121 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Tsang, T.H., Himmelblau, D.M., Edgar, T.F.: Optimal control via collocation and non-linear programming. International Journal on Control 21, 763–768 (1975)zbMATHCrossRefGoogle Scholar
  60. 60.
    Wächter, A.: An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. PhD thesis, Carnegie Mellon University (2002)Google Scholar
  61. 61.
    Wirsching, L.: An SQP algorithm with inexact derivatives for a direct multiple shooting method for optimal control problems. Master’s thesis, University of Heidelberg (2006)Google Scholar
  62. 62.
    Wirsching, L., Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy for fast adjoint based nonlinear model predictive control. In: Preprints of the 7th Symposium on Nonlinear Control Systems (NOLCOS), Pretoria (2007)Google Scholar
  63. 63.
    Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM Publications, Philadelphia (1997)zbMATHGoogle Scholar
  64. 64.
    Zavala, V.M., Biegler, L.T.: The advanced step nmpc controller: Optimality, stability and robustness. Automatica (accepted for publication) (2008)Google Scholar
  65. 65.
    Zavala, V.M., Biegler, L.T.: Nonlinear programming sensitivity for nonlinear state estimation and model predictive control. In: International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Moritz Diehl
    • 1
  • Hans Joachim Ferreau
    • 1
  • Niels Haverbeke
    • 1
  1. 1.Optimization in Engineering Center (OPTEC) and ESAT-SCDK.U. LeuvenLeuvenBelgium

Personalised recommendations