Nonlinear Model Predictive Control pp 325-333

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)

A Flatness-Based Iterative Method for Reference Trajectory Generation in Constrained NMPC

  • J. A. De Doná
  • F. Suryawan
  • M. M. Seron
  • J. Lévine

Abstract

This paper proposes a novel methodology that combines the differential flatness formalism for trajectory generation of nonlinear systems, and the use of a model predictive control (MPC) strategy for constraint handling. The methodology consists of a trajectory generator that generates a reference trajectory parameterised by splines, and with the property that it satisfies performance objectives. The reference trajectory is generated iteratively in accordance with information received from the MPC formulation. This interplay with MPC guarantees that the trajectory generator receives feedback from present and future constraints for real-time trajectory generation.

Keywords

flatness trajectory generation B-splines Nonlinear MPC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: Introductory theory and examples. International Journal of Control 61, 1327–1361 (1995)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Flores, M.E., Milam, M.B.: Trajectory generation for differentially flat systems via NURBS basis functions with obstacle avoidance. In: 2006 American Control Conference, Minneapolis, USA (2006)Google Scholar
  4. 4.
    Goodwin, G.C., Seron, M., De Doná, J.A.: Constrained Control and Estimation: An Optimisation Approach. Communications and Control Engineering Series. Springer, Heidelberg (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. A. De Doná
    • 1
    • 2
  • F. Suryawan
    • 1
  • M. M. Seron
    • 1
  • J. Lévine
    • 2
  1. 1.CDSC, School of Electrical Engineering and Computer ScienceThe University of NewcastleCallaghanAustralia
  2. 2.CAS, Mathématiques et Systèmes, Mines-ParisTechFontainebleauFrance

Personalised recommendations