Fuzzy Subspace Clustering

Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to transfer an alternative to the fuzzifier (Klawonn and Höppner, What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier, In: Proc. 5th Int. Symp. on Intelligent Data Analysis, 254–264, Springer, Berlin, 2003) to attribute weighting fuzzy clustering (Keller and Klawonn, Int J Uncertain Fuzziness Knowl Based Syst 8:735–746, 2000). In addition, by reformulating Gustafson–Kessel fuzzy clustering, a scheme for weighting and selecting principal axes can be obtained. While in Borgelt (Feature weighting and feature selection in fuzzy clustering, In: Proc. 17th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 2008) I already presented such an approach for a global selection of attributes and principal axes, this paper extends it to a cluster-specific selection, thus arriving at a fuzzy subspace clustering algorithm (Parsons, Haque, and Liu, 2004).

Keywords

Feature selection Feature weighting Fuzzifier alternative Fuzzy clustering Subspace clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezdek, J. C., Keller, J., Krishnapuram, R., & Pal, N. (1999). Fuzzy models and algorithms for pattern recognition and image processing. Dordrecht: Kluwer.Google Scholar
  2. Bezdek, J. C., & Pal, N. (1992). Fuzzy models for pattern recognition. New York: IEEE Press.Google Scholar
  3. Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Irvine, CA: University of California.Google Scholar
  4. Borgelt, C. (2005). Prototype-based classification and clustering. Habilitation thesis, University of Magdeburg, Germany.Google Scholar
  5. Borgelt, C. (2008). Feature weighting and feature selection in fuzzy clustering. In Proceedings of 17th IEEE International Confonfrence on Fuzzy Systems (FUZZ-IEEE 2008, Hongkong, China). Piscataway, NJ: IEEE Press.Google Scholar
  6. Butterworth, R., Piatetsky-Shapiro, G., & Simovici, D. A. (2005). On feature selection through clustering. In Proceedings of 5th IEEE International Confonfrence on Data Mining (ICDM 2005, Houston, TX) (pp. 581–584). Piscataway, NJ: IEEE Press.Google Scholar
  7. Dash, M., Choi, K., Scheuermann, P., & Liu, H. (2002). Feature selection for clustering: A filter solution. In Proceedings of 2nd IEEE International Confonfrence on Data Mining (ICDM 2002, Maebashi, Japan) (pp. 51–58). Piscataway: IEEE Press.Google Scholar
  8. Dash, M., & Liu, H. (2000). Feature selection for clustering. In Proceedings of 4th Pacific-Asia Confonfrence on Knowledge Discovery and Data Mining (PAKDD 2000, Kyoto, Japan) (pp. 110–121). London: Springer.Google Scholar
  9. Dy, J. G., & Brodley, C. E. (2000). Visualization and interactive feature selection for unsupervised data. In Proceedings of 6th ACM International Confonfrence on Knowledge Discovery and Data Mining (KDD 2000, Boston, MA) (pp. 360–364). New York: ACM Press.Google Scholar
  10. Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore, MD: The Johns Hopkins University Press.Google Scholar
  11. Gustafson, E. E., & Kessel, W. C. (1979). Fuzzy clustering with a fuzzy covariance matrix. In Proceedings of the IEEE Confonfrence on Decision and Control (CDC 1979, San Diego, CA) (pp. 761–766). Piscataway, NJ: IEEE Press. Reprinted in Bezdek and Pal (1992) (pp. 117–122).Google Scholar
  12. Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy cluster analysis. Chichester, UK: Wiley.Google Scholar
  13. Jouve, P.-E., & Nicoloyannis, N. (2005). A filter feature selection method for clustering. In Proceedings of 15th International Symposium on Foundations of Intelligent Systems (ISMIS 2005, Saratoga Springs, NY) (pp. 583–593). Heidelberg: Springer.Google Scholar
  14. Keller, A., & Klawonn, F. (2000). Fuzzy clustering with weighting of data variables. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 8, 735–746. Hackensack, NJ: World Scientific.Google Scholar
  15. Klawonn, F., & Höppner, F. (2003). What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier. In Proceedings of 5th International Symposium on Intelligent Data Analysis (IDA 2003, Berlin, Germany) (pp. 254–264). Berlin: Springer.Google Scholar
  16. Klawonn, F., & Kruse, R. (1997). Constructing a fuzzy controller from data. Fuzzy Sets and Systems, 85, 177–193. Amsterdam: North-Holland.Google Scholar
  17. Law, M. H. C., Figueiredo, M. A. T., & Jain, A. K. (2004). Simultaneous feature selection and clustering using mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(9), 1154–1166. Piscataway, NJ: IEEE Press.Google Scholar
  18. Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for high-dimensional data: A review. ACM SIGKDD Explorations Newsletter, 6(1), 90–105. New York: ACM Press.Google Scholar
  19. Roth, V., & Lange, T. (2004). Feature selection in clustering problems. Advances in Neural Information Processing 16: Proceedings of 17th Annual Conference (NIPS 2003, Vancouver, Canada). Cambridge, MA: MIT Press.Google Scholar
  20. Wang, X., Wang, Y., & Wang, L. (2004). Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters, 25(10), 1123–1132. New York: Elsevier.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.European Center for Soft Computing, c/ Gonzalo Gutiérrez Quirós s/nMieresSpain

Personalised recommendations