Advertisement

Collective Intelligence Generation from User Contributed Content

  • Vassilios Solachidis
  • Phivos Mylonas
  • Andreas Geyer-Schulz
  • Bettina Hoser
  • Sam Chapman
  • Fabio Ciravegna
  • Vita Lanfranchi
  • Ansgar Scherp
  • Steffen Staab
  • Costis Contopoulos
  • Ioanna Gkika
  • Byron Bakaimis
  • Pavel Smrz
  • Yiannis Kompatsiaris
  • Yannis Avrithis
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In this paper we provide a foundation for a new generation of services and tools. We define new ways of capturing, sharing and reusing information and intelligence provided by single users and communities, as well as organizations by enabling the extraction, generation, interpretation and management of Collective Intelligence from user generated digital multimedia content. Different layers of intelligence are generated, which together constitute the notion of Collective Intelligence. The automatic generation of Collective Intelligence constitutes a departure from traditional methods for information sharing, since information from both the multimedia content and social aspects will be merged, while at the same time the social dynamics will be taken into account. In the context of this work, we present two case studies: an Emergency Response and a Consumers Social Group case study.

Keywords

Collective intelligence Mass intelligence Media intelligence Organizational intelligence Personal intelligence Social intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement No. 215453 – WeKnowIt.

References

  1. Blackburn, P. (2002). Modal Logic. Cambridge: Cambridge University Press.Google Scholar
  2. Conrady, R. (2007). Travel technology in the era of Web 2.0. Heidelberg: Springer.Google Scholar
  3. Fitting, M., Mendelsohn, R. (1999). First-Order Modal Logic (Vol. 277). Dordrecht: Kluwer Academic.Google Scholar
  4. Hoser, B, & Geyer-Schulz, A. (2005). Eigenspectralanalysis of hermitian adjacency matrices for the analysis of group substructures. Journal of Mathematical Sociology, 29(4), 265–294.zbMATHCrossRefGoogle Scholar
  5. O’Really, T. (2005). What is Web 2.0: Design patterns and business models for the next generation of software. O’Reilly Media Inc.Google Scholar
  6. Palen, L., Hiltz, S., & Liu, S. (2007). Online forums supporting grassroots participation in emergency preparedness and response. Communications of the ACM 50(3), 54–58.CrossRefGoogle Scholar
  7. Scherp, A., Schwagereit, F., & Ireson, N. (2009, March). Web 2.0 and traditional knowledge management processes. In 1st workshop on knowledge services and mashups (KSM2009) at 5th conference.Google Scholar
  8. Scherp, A., Schwagereit, F., Ireson, N., & Lanfranchi, V. (2009, January). Leveraging web 2.0 communities in professional organisations. In W3C workshop on the future of social networking. Barcelona, Catalonia, Spain.Google Scholar
  9. Wasserman, S., & Faust, K. (1999). Social network analysis (1st ed., Vol. 8). Cambridge: Cambridge University Press.Google Scholar
  10. Watzlawick, P., Beavin, J. H., & Jackson, D. D. (1974) Menschliche kommunikation: Formen, Störungen, Paradoxien. Bern: Hans Huber.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vassilios Solachidis
    • 1
  • Phivos Mylonas
  • Andreas Geyer-Schulz
  • Bettina Hoser
  • Sam Chapman
  • Fabio Ciravegna
  • Vita Lanfranchi
  • Ansgar Scherp
  • Steffen Staab
  • Costis Contopoulos
  • Ioanna Gkika
  • Byron Bakaimis
  • Pavel Smrz
  • Yiannis Kompatsiaris
  • Yannis Avrithis
  1. 1.Centre of Research and Technology HellasInformatics and Telematics InstituteThessalonikiGreece

Personalised recommendations