Efficient Media Exploitation Towards Collective Intelligence

  • Phivos Mylonas
  • Vassilios Solachidis
  • Andreas Geyer-Schulz
  • Bettina Hoser
  • Sam Chapman
  • Fabio Ciravegna
  • Steffen Staab
  • Pavel Smrz
  • Yiannis Kompatsiaris
  • Yannis Avrithis
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In this work we propose intelligent, automated content analysis techniques for different media to extract knowledge from the multimedia content. Information derived from different sources/modalities will be analyzed and fused, in terms of spatiotemporal, personal and even social contextual information. In order to achieve this goal, semantic analysis will be applied to the content items, taking into account the content itself (e.g., text, images and video), as well as existing personal, social and contextual information (e.g., semantic and machine-processable metadata and tags). The above process exploits the so-called “Media Intelligence” towards the ultimate goal of identifying “Collective Intelligence”, emerging from the collaboration and competition among people, empowering innovative services and user interactions. The utilization of “Media Intelligence” constitutes a departure from traditional methods for information sharing, since semantic multimedia analysis has to fuse information from both the content itself and the social context, while at the same time the social dynamics have to be taken into account. Such intelligence provides added-value to the available multimedia content and renders existing procedures and research efforts more efficient.

Keywords

Collective intelligence Media intelligence Social media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Khatib, W., Day, Y. F., Ghafoor, A., & Berra, P. B. (2005). Semantic Annotation of Images and Videos for Multimedia Analysis. In 2nd European Semantic Web Conference (ESWC), Greece, 592–607.Google Scholar
  2. Athanasiadis, Th., Mylonas, Ph., Avrithis, Y., & Kollias, S. (2007). Semantic image segmentation and object labeling. IEEE Transactions on Circuits and Systems for Video Technology, 17(3), 298–311.CrossRefGoogle Scholar
  3. Boutell, M. (2006). Exploiting context for semantic scene classification. Technical Report 894 (Ph.D. Thesis), University of Rochester.Google Scholar
  4. Chakrabarti, S., Puniyani, K., & Das, S. (2006). Optimizing scoring functions and indexes for proximity search in type-annotated corpora. In WWW 2006: Proceedings of the 15th international conference on World Wide Web, Edinburgh, Scotland, 717–726.Google Scholar
  5. Ciravegna, F., Chapman, S., Dingli, A., & Wilks, Y. (2004, May). Learning to harvest information for the semantic web. In Proceedings of the 1st European Semantic Web Symposium (ESWS), Heraklion, Greece, 312–326.Google Scholar
  6. Ciravegna, F., & Lavelli, A. (2004). Learning Pinocchio: Adaptive information extraction for real world applications. Journal of Natural Language Engineering, 10(2), 145–165.CrossRefGoogle Scholar
  7. Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V. K., & Strintzis, M. G. (2005). Knowledge-assisted semantic video object detection. IEEE Transactions on Circuits and Systems for Video Technology, 15(10), 1210–1224 [Special Issue on Analysis and Understanding for Video Adaptation].Google Scholar
  8. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A. M., Shaked, T., et al. (2004, May). Web-scale information extraction in KnowItAll. New York: ACM.Google Scholar
  9. Foote, J. (1999). An overview of audio information retrieval. ACM Multimedia Systems, 7(1), 42–51.CrossRefGoogle Scholar
  10. Haas, M., Lew, M. S., & Huijsmans, D. P. (1997). A new method for key frame based video content representation. Image Databases and Multimedia Search, A. Smeulders and R. Jain, Eds., World Scientific, 191–200.Google Scholar
  11. Haralick, R. M., & Shapiro, L. G. (1993). Computer and robot vision. New York: Addison-Wesley.Google Scholar
  12. Iria, J., & Ciravegna, F. (2006, 24–26 May). A methodology and tool for representing language resources for information extraction. In 5th International Conference on Language Resources and Evaluation (LREC 2007), Genoa.Google Scholar
  13. Maragos, P. (2004, September). Cross-modal integration for performance improving in multimedia: state of the art report. MUSCLE NoE Deliverable D.6.1.Google Scholar
  14. Mylonas, Ph., & Avrithis, Y. (2007, 6–8 June). Using multiple domain visual context in image analysis. In 8th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2007), Santorini, Greece, 12–12.Google Scholar
  15. Papadopoulos, G. Th., Mylonas, Ph., Mezaris, V., Avrithis, Y., & Kompatsiaris, I. (2006). Knowledge-assisted image analysis based on context and spatial optimisation. International Journal on Semantic Web and Information Systems, 2(3), 17–36.Google Scholar
  16. Popescu, A., Grefenstette, G., Millet, C., Moellic, P. -A., & Hede, P. (2006, 6–8 December). Imaging words – wording images. In 1st International Conference on Semantic And digital Media Technologies (SAMT 2006), Athens, Greece.Google Scholar
  17. Smeulders, A., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1349–1380.CrossRefGoogle Scholar
  18. Stevenson, M., & Greenwood, M. (2006). Comparing information extraction pattern models. In Proceedings of the Workshop on Information Extraction Beyond The Document (pp. 12–19). ACL.Google Scholar
  19. Vallet, D., Castells, P., Fernandez, M., Mylonas Ph., & Avrithis, Y. (2007). Personalised content retrieval in context using ontological knowledge. IEEE Transactions on Circuits and Systems for Video Technology, 17(3), 336–346.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Phivos Mylonas
    • 1
  • Vassilios Solachidis
  • Andreas Geyer-Schulz
  • Bettina Hoser
  • Sam Chapman
  • Fabio Ciravegna
  • Steffen Staab
  • Pavel Smrz
  • Yiannis Kompatsiaris
  • Yannis Avrithis
  1. 1.National Technical University of Athens, Image Video and Multimedia Systems Lab, Zographou Campus,AthensGreece

Personalised recommendations