Nonparametric Distribution Analysis for Text Mining

  • Alexandros KaratzoglouEmail author
  • Ingo Feinerer
  • Kurt Hornik
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


A number of new algorithms for nonparametric distribution analysis based on Maximum Mean Discrepancy measures have been recently introduced. These novel algorithms operate in Hilbert space and can be used for nonparametric two-sample tests. Coupled with recent advances in string kernels, these methods extend the scope of kernel-based methods in the area of text mining. We review these kernel-based two-sample tests focusing on text mining where we will propose novel applications and present an efficient implementation in the kernlab package. We also present an efficient and integrated environment for applying modern machine learning methods to complex text mining problems through the combined use of the tm (for text mining) and the kernlab (for kernel-based learning) R packages.


Kernel methods R Text mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abouelhoda, M. I., Kurtz, S., & Ohlebusch, E. (2004). Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2, 53–86.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Binongo, J. N. G. (2003). Who wrote the 15th book of Oz? An application of multivariate analysis to authorship attribution. Chance, 16(2), 9–17.MathSciNetGoogle Scholar
  3. Cancedda, N., Gaussier, E., Goutte, C., & Renders, J.-M. (2003, August). Word-sequence kernels. Journal of Machine Learning Research, 3(6), 1059–1082 (special issue on machine learning methods for text and images).Google Scholar
  4. Feinerer, I., Hornik, K., & Meyer, D. (2008, March). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 1–54.Google Scholar
  5. Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., & Smola, A. J. (2007). A kernel method for the two-sample-problem. In Schölkopf, B., Platt, J., & Hofmann, T., (Eds.), Advances in neural information processing systems (Vol. 19). MIT Press: Cambridge, MA.Google Scholar
  6. Holmes, D. I. (1994). Authorship attribution. Computers and the Humanities, 28, 87–106.CrossRefGoogle Scholar
  7. Joachims, T. (2002). Learning to classify text using support vector machines: Methods, theory, and algorithms. Boston: Kluwer Academic Publishers.Google Scholar
  8. Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab – An S4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20.Google Scholar
  9. Lewis, D. (1997). Reuters-21578 text categorization test collection.Google Scholar
  10. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002, February). Text classification using string kernels. Journal of Machine Learning Research, 2, 419–444.Google Scholar
  11. Malyutov, M. B. (2006). Authorship attribution of texts: A review. In R. Ahlswede, L. Bäumer, N. Cai, H. K. Aydinian, V. Blinovsky, C. Deppe, & H. Mashurian (Eds.), General theory of information transfer and combinatorics, Lecture Notes in Computer Science (Vol. 4123, pp. 362–380). Berlin: Springer.CrossRefGoogle Scholar
  12. R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.Google Scholar
  13. Teo, C. H., & Vishwanathan, S. V. N. (2006). Fast and space efficient string kernels using suffix arrays. In Proceedings of the 23rd International Conference on Machine Learning (pp. 929–936). New York: ACM Press.Google Scholar
  14. Vishwanathan, S. V. N., & Smola, A. J. (2003). Fast kernels for string and tree matching. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (Vol. 15, pp. 569–576). Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexandros Karatzoglou
    • 1
    Email author
  • Ingo Feinerer
  • Kurt Hornik
  1. 1.INSA de Rouen, LITISRouenFrance

Personalised recommendations