Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms

  • Carlos Segura
  • Alejandro Cervantes
  • Antonio J. Nebro
  • María Dolores Jaraíz-Simón
  • Eduardo Segredo
  • Sandra García
  • Francisco Luna
  • Juan Antonio Gómez-Pulido
  • Gara Miranda
  • Cristóbal Luque
  • Enrique Alba
  • Miguel Ángel Vega-Rodríguez
  • Coromoto León
  • Inés M. Galván
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5467)

Abstract

This work presents the application of a parallel cooperative optimization approach to the broadcast operation in mobile ad-hoc networks (manets). The optimization of the broadcast operation implies satisfying several objectives simultaneously, so a multi-objective approach has been designed. The optimization lies on searching the best configurations of the dfcn broadcast protocol for a given manet scenario. The cooperation of a team of multi-objective evolutionary algorithms has been performed with a novel optimization model. Such model is a hybrid parallel algorithm that combines a parallel island-based scheme with a hyperheuristic approach. Results achieved by the algorithms in different stages of the search process are analyzed in order to grant more computational resources to the most suitable algorithms. The obtained results for a manets scenario, representing a mall, demonstrate the validity of the new proposed approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Macker, J., Corson, M.: Mobile Ad Hoc Networking and the IETF. ACM Mobile Computing and Communications Review 2(1) (1998)Google Scholar
  2. 2.
    Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys 35(3), 268–308 (2003)CrossRefGoogle Scholar
  3. 3.
    Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer, New York (2006)MATHGoogle Scholar
  4. 4.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  5. 5.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. Evolutionary Methods for Design, Optimization and Control, 19–26 (2002)Google Scholar
  6. 6.
    Reyes-Sierra, M., Coello, C.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)MathSciNetGoogle Scholar
  7. 7.
    Hogie, L., Bouvry, P., Guinand, F.: An Overview of MANETs Simulation. Electronics Notes in Theorical Computer Science 150(1), 81–101 (2006)CrossRefGoogle Scholar
  8. 8.
    Hogie, L.: Mobile Ad Hoc networks: modelling, simulation and broadcast-based applications. PhD thesis, Le Havre University and Luxembourg University (2007)Google Scholar
  9. 9.
    Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc networks. In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 194–205 (2002)Google Scholar
  10. 10.
    Hogie, L., Seredynski, M., Guinand, F., Bouvry, P.: A Bandwidth-Efficient Broadcasting Protocol for Mobile Multi-hop Ad hoc Networks. In: 5th International Conference on Networking (ICN 2006). IEEE, Los Alamitos (2006)Google Scholar
  11. 11.
    Alba, E., Dorronso, B., Luna, F., Nebro, A.J., Bouvry, P., Hogie, L.: A Cellular Multi-Objective Genetic Algorithm for Optimal Broadcasting Strategy in Metropolitan MANETs. Computer Communications 30(4), 685–697 (2007)CrossRefGoogle Scholar
  12. 12.
    Alba, E., Cervantes, A., Gómez, J., Isasi, P., Jaraíz, M., León, C., Luque, C., Luna, F., Miranda, G., Nebro, A., Pérez, R., Segura, C.: Metaheuristic approaches for optimal broadcasting design in metropolitan mANETs. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 755–763. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Bäck, T., Schwefel, H.: Evolutionary algorithms: Some very old strategies for optimization and adaptation. In: New Computing Techniques in Physics Research II: Proceedings of the Second International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High Energy and Nuclear Physics, pp. 247–254 (1992)Google Scholar
  14. 14.
    Bäck, T., Rüdolph, G., Schwefel, H.: A survey of evolution strategies. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2–9 (1991)Google Scholar
  15. 15.
    Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar
  17. 17.
    Coello, C.A., Toscano, G., Salazar, M.: Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 256–279 (2004)CrossRefGoogle Scholar
  18. 18.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  19. 19.
    Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  20. 20.
    Coello, C.A., et al.: EMOO Repository, http://www.lania.mx/~ccoello/EMOO
  21. 21.
    Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: A cellular genetic algorithm for multiobjective optimization. In: Pelta, D.A., Krasnogor, N. (eds.) Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2006), Granada, Spain, pp. 25–36 (2006)Google Scholar
  22. 22.
    Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Design issues in a multiobjective cellular genetic algorithm. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 126–140. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Price, K., Storn, R., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2006)MATHGoogle Scholar
  24. 24.
    Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. of Global Optimization 11(4), 341–359 (1997)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Storn, R.: System design by constraint adaptation and Differential Evolution. IEEE Transactions on Evolutionary Computation 1(3), 22–34 (1999)CrossRefGoogle Scholar
  26. 26.
    Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 861–872. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Computation 7(2), 144–173 (2003)CrossRefGoogle Scholar
  28. 28.
    Burke, E.K., Landa, J.D., Soubeiga, E.: Hyperheuristic Approaches for Multiobjective Optimisation. In: Metaheuristics International Conference, pp. 11.1–11.6 (2003)Google Scholar
  29. 29.
    León, C., Miranda, G., Segura, C.: Parallel Hyperheuristic: A Self-Adaptive Island-Based Model for Multi-Objective Optimization. In: Genetic and Evolutionary Computation Conference, pp. 757–758. ACM, New York (2008)Google Scholar
  30. 30.
    León, C., Miranda, G., Segura, C.: A Parallel Plugin-Based Framework for Multi-objective Optimization. In: International Symposium on Distributed Computing and Artificial Intelligence, vol. 50/2009, pp. 142–151. Springer, Heidelberg (2008)Google Scholar
  31. 31.
    Meunier, H., Talbi, E.G., Reininger, P.: A multiobjective genetic algorithm for radio network optimization. In: Congress on Evolutionary Computation (CEC 2000), La Jolla Marriott Hotel La Jolla, California, USA, pp. 317–324. IEEE Press, Los Alamitos (2000)Google Scholar
  32. 32.
    Deb, K., Goyal, M.: A combined genetic adaptive search (geneAS) for engineering design. Computer Science and Informatics 26(4), 30–45 (1996)Google Scholar
  33. 33.
    Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)MathSciNetMATHGoogle Scholar
  34. 34.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  35. 35.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)MathSciNetMATHGoogle Scholar
  36. 36.
    Sheskin, D.: The handbook of parametric and nonparametric statistical procedures. CRC Press, Boca Raton (2003)CrossRefMATHGoogle Scholar
  37. 37.
    Hoos, H., Informatik, F., Hoos, H.H., Stutzle, T., Stutzle, T., Intellektik, F., Intellektik, F.: On the run-time behavior of stochastic local search algorithms for sat. In: Proceedings AAAI 1999, pp. 661–666 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlos Segura
    • 1
  • Alejandro Cervantes
    • 2
  • Antonio J. Nebro
    • 3
  • María Dolores Jaraíz-Simón
    • 4
  • Eduardo Segredo
    • 1
  • Sandra García
    • 2
  • Francisco Luna
    • 3
  • Juan Antonio Gómez-Pulido
    • 4
  • Gara Miranda
    • 1
  • Cristóbal Luque
    • 2
  • Enrique Alba
    • 3
  • Miguel Ángel Vega-Rodríguez
    • 4
  • Coromoto León
    • 1
  • Inés M. Galván
    • 2
  1. 1.Department of Statistics, O.R. and ComputationUniversity of La LagunaSpain
  2. 2.Computer Science DepartmentUniversity Carlos III of MadridSpain
  3. 3.Computer Science DepartmentUniversity of MálagaSpain
  4. 4.Department of Technologies of Computers and CommunicationsUniversity of ExtremaduraSpain

Personalised recommendations