Advertisement

On the Effect of the Steady-State Selection Scheme in Multi-Objective Genetic Algorithms

  • Juan J. Durillo
  • Antonio J. Nebro
  • Francisco Luna
  • Enrique Alba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5467)

Abstract

Genetic Algorithms (GAs) have been widely used in single-objective as well as in multi-objective optimization for solving complex optimization problems. Two different models of GAs can be considered according to their selection scheme: generational and steady-state. Although most of the state-of-the-art multi-objective GAs (MOGAs) use a generational scheme, in the last few years many proposals using a steady-state scheme have been developed. However, the influence of using those selection strategies in MOGAs has not been studied in detail. In this paper we deal with this gap. We have implemented steady-state versions of the NSGA-II and SPEA2 algorithms, and we have compared them to the generational ones according to three criteria: the quality of the resulting approximation sets to the Pareto front, the convergence speed of the algorithm, and the computing time. The results show that multi-objective GAs can profit from the steady-state model in many scenarios.

Keywords

Genetic Algorithms Comparative Study Generational and Steady-State Selection Scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chafekar, D., Xuan, J., Rasheed, K.: Constrained multi-objective optimization using steady state genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 813–824. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  3. 3.
    Deb, K., Mohan, M., Mishar, S.: Evaluating the ε-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolutionary Computation 13(4), 501–525 (2005)CrossRefGoogle Scholar
  4. 4.
    Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATHGoogle Scholar
  8. 8.
    Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A Study of Master-Slave Approaches to Parallelize NSGA-II. In: IEEE Iinternational Symposium on Parallel and Distributed Processing, 2008 - IPDPS 2008, pp. 1–8 (2008)Google Scholar
  9. 9.
    Durillo, J.J., Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E.: jMetal: A Java Framework for Developing Multi-Objective Optimization Metaheuristics. Technical Report ITI-2006-10, Dept. de Lenguajes y Ciencias de la Computación, University of Málaga (December 2006)Google Scholar
  10. 10.
    Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Huband, S., Hingston, P., Barone, L., While, R.L.: A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Trans. Evolutionary Computation 10(5), 477–506 (2006)CrossRefMATHGoogle Scholar
  12. 12.
    Igel, C., Suttorp, T., Hansen, N.: Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 171–185. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Technical Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)Google Scholar
  14. 14.
    Kumar, R., Rockett, P.: Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10(3), 283–314 (2002)CrossRefGoogle Scholar
  15. 15.
    Nebro, A.J., Durillo, J.J., Coello, C.A., Luna, F., Alba, E.: A Study of Convergence Speed in Multi-objective Metaheuristics. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 171–185. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Grefenstette, J.J. (ed.) Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–100 (1985)Google Scholar
  17. 17.
    Srinivasan, D., Rachmawati, L.: An Efficient Multi-objective Evolutionary Algorithm with Steady-State Replacement Model. In: GECCO 2006, pp. 715–722 (2006)Google Scholar
  18. 18.
    Valenzuela, C.L.: A Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAMO). In: IEEE Congress on Evolutionary Computation, 2002 - CEC 2002, pp. 717–722 (2002)Google Scholar
  19. 19.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar
  20. 20.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)Google Scholar
  21. 21.
    Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan J. Durillo
    • 1
  • Antonio J. Nebro
    • 1
  • Francisco Luna
    • 1
  • Enrique Alba
    • 1
  1. 1.Department of Computer ScienceUniversity of MálagaSpain

Personalised recommendations