Advertisement

Evaluating Resistance of MCML Technology to Power Analysis Attacks Using a Simulation-Based Methodology

  • Francesco Regazzoni
  • Thomas Eisenbarth
  • Axel Poschmann
  • Johann Großschädl
  • Frank Gurkaynak
  • Marco Macchetti
  • Zeynep Toprak
  • Laura Pozzi
  • Christof Paar
  • Yusuf Leblebici
  • Paolo Ienne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5430)

Abstract

This paper explores the resistance of MOS Current Mode Logic (MCML) against attacks based on the observation of the power consumption. Circuits implemented in MCML, in fact, have unique characteristics both in terms of power consumption and the dependency of the power profile from the input signal pattern. Therefore, MCML is suitable to protect cryptographic hardware from Differential Power Analysis and similar side-channel attacks.

In order to demonstrate the effectiveness of different logic styles against power analysis attacks, two full cores implementing the AES algorithm were realized and implemented with CMOS and MCML technology, and a set of different types of attack was performed using power traces derived from SPICE-level simulations. Although all keys were discovered for CMOS, MCML traces did not presents characteristic that can lead to a successful attack.

Keywords

Smart Card Block Cipher Advance Encryption Standard Power Trace Correlation Power Anal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AAE02]
    Anis, M., Allam, M., Elmasry, M.: Impact of technology scaling on CMOS logic styles. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on] 49(8), 577–588 (2000)Google Scholar
  2. [BCO04]
    Brier, É., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. [BGI+08]
    Badel, S., Guleyupoglu, E., Inac, O., Martinez, A.P., Vietti, P., Gurkaynak, F., Leblebici, Y.: A Generic Standard Cell Design Methodology for Differential Circuit Styles. In: Design Automation and Test in Europe 2008, pp. 843–848 (2008)Google Scholar
  4. [BGLT04]
    Bucci, M., Guglielmo, M., Luzzi, R., Trifiletti, A.: A Power Consumption Randomization Countermeasure for DPA-Resistant Cryptographic Processors. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 481–490. Springer, Heidelberg (2004)Google Scholar
  5. [BS97]
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. [GR99]
    Gonzalez, J.L., Rubio, A.: Low delta-I noise CMOS circuits based on differential logic and current limiters. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers, IEEE Transactions on] 46(7), 872–876 (1999)Google Scholar
  7. [IoSTN01]
    National Institute of Standards and Technology (NIST). Announcing the Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197 (November 2001)Google Scholar
  8. [KJJ99]
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. [Koc96]
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  10. [MKA92]
    Maskai, S.R., Kiaei, S., Allstot, D.J.: Synthesis techniques for CMOS folded source-coupled logic circuits. IEEE Journal of Solid-State Circuits 27(8), 1157–1167 (1992)CrossRefGoogle Scholar
  11. [MOP07]
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Advances in Information Security. Springer, Heidelberg (2007)MATHGoogle Scholar
  12. [RBE+07]
    Regazzoni, F., Badel, S., Eisenbarth, T., Großschädl, J., Poschmann, A., Toprak, Z., Macchetti, M., Pozzi, L., Paar, C., Leblebici, Y., Ienne, P.: A Simulation-Based Methodology for Evaluating the DPA-Resistance of Cryptographic Functional Units with Application to CMOS and MCML Technologies. In: International Symposium on Systems, Architectures, Modeling and Simulation, SAMOS VII (2007)Google Scholar
  13. [TAV02]
    Tiri, K., Akmal, M., Verbauwhede, I.M.: A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards. In: Proceedings of the 28th European Solid-State Circuits Conference (ESSCIRC 2002), September 2002, pp. 403–406. University of Bologna, Bologna (2002)Google Scholar
  14. [TAY+05]
    Toprak, Z., Verma, A., Leblebici, Y., Ienne, P., Paar, C.: Design of Low-Power DPA-Resistant Cryptographic Functional Units. In: Workshop on Cryptographic Advances in Secure Hardware (2005)Google Scholar
  15. [TV03]
    Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic level: Next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francesco Regazzoni
    • 1
  • Thomas Eisenbarth
    • 2
  • Axel Poschmann
    • 2
  • Johann Großschädl
    • 3
  • Frank Gurkaynak
    • 4
  • Marco Macchetti
    • 5
  • Zeynep Toprak
    • 6
  • Laura Pozzi
    • 7
  • Christof Paar
    • 2
  • Yusuf Leblebici
    • 6
  • Paolo Ienne
    • 8
  1. 1.ALaRI – University of LuganoLuganoSwitzerland
  2. 2.Horst Görtz Institute for IT SecurityBochumGermany
  3. 3.Department of Computer ScienceUniversity of BristolBristolUK
  4. 4.Swiss Federal Institute of Technology – ETHZurichSwitzerland
  5. 5.Nagracard SACheseaux-sur-LausanneSwitzerland
  6. 6.School of Engineering –EPFLLausanneSwitzerland
  7. 7.Faculty of InformaticsUniversity of LuganoLuganoSwitzerland
  8. 8.School of Computer and Communication Sciences – EPFLLausanneSwitzerland

Personalised recommendations