Advertisement

Asymmetric Group Key Agreement

  • Qianhong Wu
  • Yi Mu
  • Willy Susilo
  • Bo Qin
  • Josep Domingo-Ferrer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5479)

Abstract

A group key agreement (GKA) protocol allows a set of users to establish a common secret via open networks. Observing that a major goal of GKAs for most applications is to establish a confidential channel among group members, we revisit the group key agreement definition and distinguish the conventional (symmetric) group key agreement from asymmetric group key agreement (ASGKA) protocols. Instead of a common secret key, only a shared encryption key is negotiated in an ASGKA protocol. This encryption key is accessible to attackers and corresponds to different decryption keys, each of which is only computable by one group member. We propose a generic construction of one-round ASGKAs based on a new primitive referred to as aggregatable signature-based broadcast (ASBB), in which the public key can be simultaneously used to verify signatures and encrypt messages while any signature can be used to decrypt ciphertexts under this public key. Using bilinear pairings, we realize an efficient ASBB scheme equipped with useful properties. Following the generic construction, we instantiate a one-round ASGKA protocol tightly reduced to the decision Bilinear Diffie-Hellman Exponentiation (BDHE) assumption in the standard model.

Keywords

Random Oracle Bilinear Pairing Broadcast Scheme Challenge Ciphertext Choose Message Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and Analysis of Authentication and Key Exchange. In: STOC 1998, pp. 419–428. ACM Press, New York (1998)Google Scholar
  2. 2.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing. SIAM J. of Computing 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption Schemes. In: Pieprzyk, J. (ed.) Asiacrypt’08. LNCS, vol. 5350, pp. 455–470. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Silverberg, A.: Applications of Multilinear Forms to Cryptography. Contemporary Mathematics 324, 71–90 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boyd, C., González-Nieto, J.M.: Round-Optimal Contributory Conference Key Agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-Hellman Key Exchange - The Dynamic Case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably Authenticated Group Diffie-Hellman Key Exchange. In: Samarati, P. (ed.) ACM CCS 2001, pp. 255–264. ACM Press, New York (2001)Google Scholar
  11. 11.
    Burmester, M., Desmedt, Y.G.: A Secure and Efficient Conference Key Distribution System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    ElGamal, T.: A Public Key Cryptosystem and Signature Scheme Based on Discrete Logarithms. IEEE Transaction on Information Theory 31, 467–472 (1985)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Galbraith, S.D., Rotger, V.: Easy Decision Diffie-Hellman Groups. Journal of Computation and Mathematics 7, 201–218 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gentry, C.: Certificate-Based Encryption and the Certificate-Revocation Problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–291. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against Adaptive Chosen-message Attacks. SIAM J. Computing 17(2), 281–308 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. J. of Cryptology 17, 263–276 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Kudla, C., Paterson, K.G.: Modular Security Proofs for Key Agreement Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Tzeng, W.-G., Tzeng, Z.-J.: Round-Efficient Conference Key Agreement Protocols with Provable Security. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 614–627. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric Group Key Agreement. The full version (2009), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qianhong Wu
    • 1
    • 2
  • Yi Mu
    • 3
  • Willy Susilo
    • 3
  • Bo Qin
    • 1
    • 4
  • Josep Domingo-Ferrer
    • 1
  1. 1.Dept. of Comp. Eng. and Maths UNESCO Chair in Data Privacy, TarragonaUniversitat Rovira i VirgiliCatalonia
  2. 2.Key Lab. of Aerospace Information Security and Trusted Computing Ministry of Education, School of ComputerWuhan UniversityChina
  3. 3.Centre for Computer and Information Security Research School of Computer Science and Software EngineeringUniversity of WollongongAustralia
  4. 4.Dept. of Maths, School of ScienceXi’an University of TechnologyChina

Personalised recommendations