Unlock Your Data: The Case of MyTag

  • Thomas Franz
  • Klaas Dellschaft
  • Steffen Staab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5468)

Abstract

The business model of Web2.0 applications like FaceBook, Flickr, YouTube and their likes is based on an asymmetry: Users generate content, Web2.0 application providers own, (i), the access to user content, (ii), the user profiles and, (iii), user interaction data. We argue in this paper that such asymmetry disadvantages the users and prevents innovative applications. We demonstrate an application, MyTag, that is based on a layer for cross-application user profiling and personalization and that exploits web service access to user data. Presenting this application, we conclude that such applications offer additional value to users and usage of such applications on content generated by the users should not be at the disposal of the application provider, but should be a part of users’ rights.

Keywords

User-generated content Web2.0 Mash-ups User rights 

References

  1. 1.
    Anadiotis, G., Franz, T., Boll, S.: W3C Multimedia Semantics Incubator Group: Tagging Use Case (2007), http://www.w3.org/2005/Incubator/mmsem/wiki/Tagging_Use_Case
  2. 2.
    Braun, M., Dellschaft, K., Franz, T., Hering, D., Jungen, P., Metzler, H., Müller, E., Rostilov, A., Saathoff, C.: Personalized Search and Exploration with MyTag. In: Proceedings of the WWW 2008 Poster Session (2008)Google Scholar
  3. 3.
    Gauch, S., Wang, G., Gomez, M.: ProFusion: Intelligent Fusion from Multiple, Distributed Search Engines. Journal of Universal Computer Science 2(9), 637–649 (1996)Google Scholar
  4. 4.
    Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo — the general user model ontology. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS, vol. 3538, pp. 428–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Maurer, H., Balke, T., Kappe, F., Kulathuramaiyer, N., Weber, S., Zaka, B.: Report on dangers and opportunities posed by large search engines, particularly google (September 2007), http://www.iicm.tugraz.at/iicm_papers/dangers_google.pdf
  7. 7.
    Voorhees, E.M., Gupta, N.K., Johnson-Laird, B.: Learning collection fusion strategies. In: Proc. of SIGIR, pp. 172–179 (1995)Google Scholar
  8. 8.
    Wenning, R., Schunter, M.: The platform for privacy preferences 1.1. W3C Working Group Note 13 (November 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Franz
    • 1
  • Klaas Dellschaft
    • 1
  • Steffen Staab
    • 1
  1. 1.University of KoblenzKoblenzGermany

Personalised recommendations