Matching Trace Patterns with Regular Policies

  • Franz Baader
  • Andreas Bauer
  • Alwen Tiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

We consider policies that are described by regular expressions, finite automata, or formulae of linear temporal logic (LTL). Such policies are assumed to describe situations that are problematic, and thus should be avoided. Given a trace pattern u, i.e., a sequence of action symbols and variables, were the variables stand for unknown (i.e., not observed) sequences of actions, we ask whether u potentially violates a given policy L, i.e., whether the variables in u can be replaced by sequences of actions such that the resulting trace belongs to L. We also consider the dual case where the regular policy L is supposed to describe all the admissible situations. Here, we want to know whether u always adheres to the given policy L, i.e., whether all instances of u belong to L. We determine the complexity of the violation and the adherence problem, depending on whether trace patterns are linear or not, and on whether the policy is assumed to be fixed or not.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The forSpec temporal logic: A new temporal property-specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 296. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for temporal logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757–775. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ben-David, S., Fisman, D., Ruah, S.: Embedding finite automata within regular expressions. Theoretical Computer Science 404, 202–218 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Cohen, J., Perrin, D., Pin, J.-E.: On the expressive power of temporal logic. J. Comput. System Sci. 46, 271–294 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Colin, S., Mariani, L.: Run-time verification. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated Circuits and Systems. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-completeness. W. H. Freeman and Company, San Francisco (1979)MATHGoogle Scholar
  11. 11.
    Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 342. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Kirchner, C., Kirchner, H., Santana de Oliveira, A.: Analysis of rewrite-based access control policies. In: Proc. 3rd International Workshop on Security and Rewriting Techniques (2008)Google Scholar
  13. 13.
    Kozen, D.: Lower bounds for natural proof systems. In: Proc. FOCS 1977. IEEE Computer Society, Los Alamitos (1977)Google Scholar
  14. 14.
    Krukow, K., Nielsen, M., Sassone, V.: A framework for concrete reputation-systems with applications to history-based access control. In: Proc. ACM Conference on Computer and Communications Security. ACM, New York (2005)Google Scholar
  15. 15.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, Heidelberg (1992)CrossRefMATHGoogle Scholar
  16. 16.
    Perrin, D.: Finite Automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B. Elsevier, Amsterdam (1990)Google Scholar
  17. 17.
    Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In: Proc. FOCS 1999. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  18. 18.
    Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977. IEEE Computer Society, Los Alamitos (1977)Google Scholar
  19. 19.
    Savitch, W.J.: Relationship between nondeterministic and deterministic tape complexities. J. of Computer and System Sciences 4, 177–192 (1970)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50 (2000)CrossRefGoogle Scholar
  21. 21.
    Schulz, K.U.: Makanin’s algorithm for word equations - two improvements and a generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  22. 22.
    Prasad Sistla, A., Clarke, E.C.: The complexity of propositional linear temporal logic. J. of the ACM 32(3), 733–749 (1985)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. In: Proc. STOC 1984 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Franz Baader
    • 1
  • Andreas Bauer
    • 2
  • Alwen Tiu
    • 2
  1. 1.TU DresdenGermany
  2. 2.The Australian National UniversityAustralia

Personalised recommendations