A Kleene Theorem for Forest Languages

  • Lutz Straßburger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

This paper proposes an alternative approach to the standard notion of rational (or regular) expression for tree languages. The main difference is that in the new notion we have only one concatenation operation and only one star-operation, instead of many different ones. This is achieved by considering forests instead of trees over a ranked alphabet, or, algebraicly speaking, by considering cartesian categories instead of term-algebras. The main result is that in the free cartesian category the rational languages and the recognizable languages coincide. For the construction of the rational expression for a recognizable language it is not necessary to extend the alphabet. We only use operations that can be defined with the algebraic structure provided by cartesian categories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–40. Princeton (1956)Google Scholar
  2. 2.
    Eilenberg, S.: Automata, Languages And Machines, vol. B. Academic Press, New York (1976)MATHGoogle Scholar
  3. 3.
    Ochmański, E.: Regular behaviour of concurrent systems. Bull. Europ. Assoc. Theoret. Comput. Sci. (EATCS) 27, 56–67 (1985)Google Scholar
  4. 4.
    Schützenberger, M.P.: On the definition of a family of automata. Inform. And Control 4, 245–270 (1961)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Droste, M., Gastin, P.: The Kleene–Schützenberger theorem for formal power series in partially commuting variables. Information and Computation 153, 47–80 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Systems Theory 2, 57–81 (1968)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata for unranked trees. J. Comput. Syst. Sci. 73(4), 550–583 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007) (release October 12, 2007)Google Scholar
  10. 10.
    Courcelle, B.: On recognizable sets and tree automata. In: Nivat, M., Ait-Kaci, H. (eds.) Resolution of equations in algebraic structures, pp. 93–126. Academic Press, London (1989)Google Scholar
  11. 11.
    Gécseg, F., Steinby, M.: Tree Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Beyond Words, vol. 3, pp. 1–68. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Lawvere, F.W.: Functorial semantics of algebraic theories. In: Proceedings of the National Academy of Sciences, USA. Volume 50., National Academy of Sciences, Summary of PhD thesis, pp. 869–872, Columbia University (1963)Google Scholar
  13. 13.
    Bloom, S.L., Ésik, Z.: Iteration Theories. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  14. 14.
    Ésik, Z.: An axiomatization of regular forests in the language of algebraic theories with iteration. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 130–136. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  15. 15.
    Ésik, Z., Weil, P.: Algebraic recognizability of regular tree languages. Theoretical Computer Science 340, 291–321 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Arnold, A., Dauchet, M.: Morphisms et bimorphisms d’arbres. Theoretical Computer Science 20, 33–93 (1982)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bojańczyk, M.: Forest expressions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 146–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Eder, E.: Properties of substitutions and unifications. Journal of Symbolic Computation 1(1), 31–46 (1985)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Straßburger, L.: Rational forest languages and sequential forest transducers. Master’s thesis, Technische Universität Dresden (2000)Google Scholar
  20. 20.
    Perrin, D.: Finite Automata. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 1–57. Elsevier Science Publishers, B.V., Amsterdam (1990)Google Scholar
  21. 21.
    Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Mathematical Systems Theory 9(3), 198–231 (1975)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree Transducers. Springer, Heidelberg (1998)CrossRefMATHGoogle Scholar
  23. 23.
    Ginsburg, S., Rose, G.F.: A characterisation of machine mappings. Can. J. of Math. 18, 381–388 (1966)CrossRefMATHGoogle Scholar
  24. 24.
    Berstel, J.: Transductions and Context-Free Languages. Leitfäden der angewandten Mathematik und Mechanik LAMM, vol. 38. B.G. Teubner Stuttgart (1979)Google Scholar
  25. 25.
    Droste, M., Pech, C., Vogler, H.: A Kleene theorem for weighted tree automata. Theory Comput. Syst. 38(1), 1–38 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Language Theory, vol. 3, pp. 389–456. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lutz Straßburger
    • 1
  1. 1.INRIA Saclay, Île-de-France, Équipe-projet Parsifal École Polytechnique, LIXPalaiseau CedexFrance

Personalised recommendations