Advertisement

Abstract

We present a novel approach to the synchronization problem. It is a well-known fact that a problem of finding minimal (or: the shortest) synchronizing word (MSW) for a given synchronizing automaton is NP-complete. In this paper we present the genetic algorithm which tries, for a given automaton, to find possibly short word that synchronizes it. We use a modified version of a classical simple genetic algorithm (SGA).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ananichev, D., Volkov, M.: Synchronizing monotonic automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 111–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, L., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. National Acad. Sci. USA 100, 2191–2196 (2003)CrossRefGoogle Scholar
  3. 3.
    Kari, J.: Synchronization and stability of finite automata. JUCS 8(2), 270–277 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Jürgensen, H.: Synchronization. Information and Computation 206(9-10), 1033–1044 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Černý, J.: Poznámka k. homogénnym experimentom s konecnymi automatmi. Mat. fyz. cas SAV 14, 208–215 (1964)Google Scholar
  6. 6.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Roman, A.: Synchronizing finite automata with short reset words. Appl. Math. Comp. (in press, 2008), doi:10.1016/j.amc.2008.06.019Google Scholar
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  9. 9.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press Edition (1992)Google Scholar
  10. 10.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  11. 11.
    Dubuc, L.: Les automates circulaires et la conjecture de Černý. Inform. Theor. Appl. 32, 21–34 (1998)MathSciNetGoogle Scholar
  12. 12.
    Kari, J.: Synchronizing finite automata on eulerian digraphs. Theor. Comp. Sci. 295, 223–232 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comp. Sci. 172, 273–279 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Trahtman, A.N.: The existence of synchronizing word and Černý conjecture for some finite automata. In: Second Haifa Workshop on Graph Theory, Combinatorics and Algorithms, Haifa (2002)Google Scholar
  15. 15.
    Černý, J., Pirická, A., Rosenauerova, B.: On directable automata. Kybernetica 7, 289–298 (1971)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Klyachko, A.A., Rystsov, I., Spivak, M.A.: An extremal combinatorial problem associated with the bound on the length of a synchronizing word in an automaton. Kybernetika 2, 16–20 (1987)zbMATHGoogle Scholar
  17. 17.
    Pin, J.E.: On two combinatorial problems arising from automata theory. Annals of Discrete Mathematics 17, 535–548 (1983)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Higgins, P.M.: The range order of a product of i transformations from a finite full transformation semigroup. Semigroup Forum 37, 31–36 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Volkov, M.: Personal communication (2008)Google Scholar
  20. 20.
    Ananichev, D., Volkov, M., Zaks, Y.: Synchronizing automata with a letter of deficiency 2. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 433–442. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adam Roman
    • 1
  1. 1.Institute of Computer ScienceJagiellonian UniversityCracowPoland

Personalised recommendations