Tiling the Plane with a Fixed Number of Polyominoes

  • Nicolas Ollinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

Deciding whether a finite set of polyominoes tiles the plane is undecidable by reduction from the Domino problem. In this paper, we prove that the problem remains undecidable if the set of instances is restricted to sets of 5 polyominoes. In the case of tiling by translations only, we prove that the problem is undecidable for sets of 11 polyominoes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grünbaum, B., Shephard, G.C.: Tilings and patterns. A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York (1989)MATHGoogle Scholar
  2. 2.
    Berger, R.: The undecidability of the domino problem. Memoirs American Mathematical Society 66 (1966)Google Scholar
  3. 3.
    Golomb, S.W.: Tiling with polyominoes. Journal of Combinatorial Theory 1(2), 280–296 (1966)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Golomb, S.W.: Tiling with sets of polyominoes. Journal of Combinatorial Theory 9(1), 60–71 (1970)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American Mathematical Society 52, 264–268 (1946)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Claus, V.: Some remarks on PCP(k) and related problems. Bulletin of the EATCS 12, 54–61 (1980)Google Scholar
  7. 7.
    Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-thue systems with a few rules. Theoretical Computer Science 330(1), 145–169 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Wijshoff, H.A.G., van Leeuwen, J.: Arbitrary versus periodic storage schemes and tessellations of the plane using one type of polyomino. Information and Control 62(1), 1–25 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete and Computational Geometry 6(1), 575–592 (1991)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gambini, I., Vuillon, L.: An algorithm for deciding if a polyomino tiles the plane. Theoretical Informatics and Applications 41(2), 147–155 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ammann, R., Grünbaum, B., Shephard, G.: Aperiodic tiles. Discrete and Computational Geometry 8(1), 1–25 (1992)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicolas Ollinger
    • 1
  1. 1.Laboratoire d’informatique fondamentale de Marseille (LIF)Aix-Marseille Université, CNRSMarseilleFrance

Personalised recommendations