Converting Self-verifying Automata into Deterministic Automata

  • Galina Jirásková
  • Giovanni Pighizzini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

Self-verifying automata are a special variant of finite automata with a symmetric kind of nondeterminism. In this paper, we study the transformation of self-verifying automata into deterministic automata from a descriptional complexity point of view. The main result is the exact cost, in terms of the number of states, of such a simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234 (2002)MathSciNetMATHGoogle Scholar
  2. 2.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Lupanov, O.: A comparison of two types of finite automata. Problemy Kibernet 6, 321–326 (1963) (in Russian); German translation: Über den Vergleich zweier Typen endlicher Quellen, Probleme der Kybernetik 6, 329–335 (1966)Google Scholar
  4. 4.
    Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers C-20(10), 1211–1214 (1971)CrossRefMATHGoogle Scholar
  5. 5.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proc. 12th Ann. IEEE Symp. on Switching and Automata Theory, pp. 188–191 (1971)Google Scholar
  6. 6.
    Ďuriš, P., Hromkovič, J., Rolim, J., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 117–128. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Hromkovič, J., Schnitger, G.: Nondeterministic communication with a limited number of advice bits. SIAM J. Comput. 33(1), 43–68 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Information and Computation 169(2), 284–296 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Assent, I., Seibert, S.: An upper bound for transforming self-verifying automata into deterministic ones. Theoretical Informatics and Applications 41(3), 261–265 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Moon, J., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science 47, 149–158 (1986); Corrigendum. ibid 302, 497–498 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. Theoretical Computer Science 330(2), 349–360 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. Journal of Automata, Languages and Combinatorics 6(4), 453–466 (2001)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Galina Jirásková
    • 1
  • Giovanni Pighizzini
    • 2
  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations