Non-uniform Cellular Automata

  • Gianpiero Cattaneo
  • Alberto Dennunzio
  • Enrico Formenti
  • Julien Provillard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

In this paper we begin the study the dynamical behavior of non-uniform cellular automata and compare it to the behavior of “classical” cellular automata. In particular we focus on surjectivity and equicontinuity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farina, F., Dennunzio, A.: A predator-prey ca with parasitic interactions and environmentals effects. Fundamenta Informaticae 83, 337–353 (2008)MathSciNetMATHGoogle Scholar
  2. 2.
    Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata Theory and Applications, vol. 1. IEEE Press, Los Alamitos (1997)MATHGoogle Scholar
  3. 3.
    Chopard, B.: Modelling physical systems by cellular automata. In: Rozenberg, G., et al. (eds.) Handbook of Natural Computing: Theory, Experiments, and Applications. Springer, Heidelberg (to appear, 2009)Google Scholar
  4. 4.
    Formenti, E., Kůrka, P.: Dynamics of cellular automata in non-compact spaces. In: Meyers, B. (ed.) Mathematical basis of cellular automata. Encyclopedia of Complexity and System Science. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Kůrka, P.: Topological dynamics of one-dimensional cellular automata. In: Meyers, B. (ed.) Mathematical basis of cellular automata. Encyclopedia of Complexity and System Science. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Cervelle, J., Dennunzio, A., Formenti, E.: Chaotic behavior of cellular automata. In: Meyers, B. (ed.) Mathematical basis of cellular automata. Encyclopedia of Complexity and System Science. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Kari, J.: Tiling problem and undecidability in cellular automata. In: Meyers, B. (ed.) Mathematical basis of cellular automata. Encyclopedia of Complexity and System Science. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Di Lena, P., Margara, L.: Undecidable properties of limit set dynamics of cellular automata. In: 26th Symposium on Theoretical Aspects of Computer Science (STACS 2009). LNCS. Springer, Heidelberg (to appear, 2009)Google Scholar
  9. 9.
    Di Lena, P., Margara, L.: Computational complexity of dynamical systems: the case of cellular automata. Information and Computation 206, 1104–1116 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dennunzio, A., Formenti, E.: Decidable properties of 2D cellular automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 264–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Dennunzio, A., Formenti, E., Kůrka, P.: Cellular automata dynamical systems. In: Rozenberg, G., et al. (eds.) Handbook of Natural Computing: Theory, Experiments, and Applications. Springer, Heidelberg (to appear, 2009)Google Scholar
  12. 12.
    Dennunzio, A., Formenti, E.: 2D cellular automata: new constructions and decidable properties (submitted, 2009)Google Scholar
  13. 13.
    Acerbi, L., Dennunzio, A., Formenti, E.: Conservation of some dynamcal properties for operations on cellular automata. Theoretical Computer Science (to appear, 2009)Google Scholar
  14. 14.
    Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: On the directional dynamics of additive cellular automata. Theoretical Computer Science (to appear, 2009)Google Scholar
  15. 15.
    Dennunzio, A., Masson, B., Guillon, P.: Sand automata as cellular automata (submitted, 2009)Google Scholar
  16. 16.
    Dennunzio, A., Guillon, P., Masson, B.: Stable dynamics of sand automata. In: Fifth IFIP Confercence on Theoretical Computer Science (TCS 2008). IFIP, vol. 273, pp. 157–179. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Mathematical System Theory 3, 320–375 (1969)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Moore, E.F.: Machine models of self-reproduction. In: Proceedings of Symposia in Applied Mathematics, vol. 14, pp. 13–33 (1962)Google Scholar
  19. 19.
    Myhill, J.: The converse to Moore’s garden-of-eden theorem. Proceedings of the American Mathematical Society 14, 685–686 (1963)MathSciNetMATHGoogle Scholar
  20. 20.
    Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences 48, 149–182 (1994)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory & Dynamical Systems 17, 417–433 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kůrka, P.: Topological and Symbolic Dynamics. Cours Spécialisés, vol. 11. Société Mathématique de France (2004)Google Scholar
  23. 23.
    Knudsen, C.: Chaos without nonperiodicity. American Mathematical Monthly 101, 563–565 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gianpiero Cattaneo
    • 1
  • Alberto Dennunzio
    • 1
  • Enrico Formenti
    • 2
  • Julien Provillard
    • 3
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano–BicoccaMilanoItaly
  2. 2.Laboratoire I3SUniversité de Nice-Sophia AntipolisSophia AntipolisFrance
  3. 3.Ecole Normale Supérieure de LyonLyonFrance

Personalised recommendations