Advertisement

Nanotechnology Applications for Sustainable Cement-Based Products

  • L. Raki
  • J. J. Beaudoin
  • R. Alizadeh

Abstract

Concrete is a macro-material strongly influenced by the properties of its components and hydrates at the nanoscale. Progress at this level will engender new opportunities for improvement of strength and durability of concrete materials. This article will focus on recent research work in the field of nanoscience applications to cement and concrete at the NRC-IRC. A particular attention will be given to nanoparticles and cement-based nanocomposites.

Keywords

Calcium Silicate Hydrate Chemical Admixture Hardened Cement Concrete Technology Control Release Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartos, P.J.M.: Nanotechnology in construction: A roadmap for development. In: Proceedings of the 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain, November 13-16, 2005, pp. 27–36 (2005) Google Scholar
  2. 2.
    Dry, C.M., Corsaw, M.J.T.: A time-release technique for corrosion prevention. Cem. Concr. Res. 28(8), 1133–1140 (1998)CrossRefGoogle Scholar
  3. 3.
    Dry, C.M.: Alteration of matrix permeability and associated pore and crack structure by timed release of internal chemicals. Ceram. Trans. 16, 729–768 (1991)Google Scholar
  4. 4.
    Reddy, B.R., Crook, R.J., Chatterji, J., King, B.J., Gray, D.W., Fitzgerald, R.M., Pwell, R.J., Todd, B.L.: Controlling the release of chemical additives in well treating fluids, US. Patent 6,209, 646 (2001) Google Scholar
  5. 5.
    Tatematsu, H., Nakamura, T., Koshimuzu, H., Morishita, T., Kotaki, H.: Cement additive for inhibiting concrete deterioration, US. Patent 5,435, 848 (1995) Google Scholar
  6. 6.
    Raki, L., Beaudoin, J.J., Mitchell, L.D.: Layered double hyroxides-like materials: nanocomposites for use in concrete. Cem. Concr. Res. 34, 1717–1724 (2004)CrossRefGoogle Scholar
  7. 7.
    Raki, L., Beaudoin, J.J.: Controlled release of chemical admixtures. Canadian Patent # CA 2554347, US patent Application US 2007/0022916 A1 (2007) Google Scholar
  8. 8.
    Kantro, D.L.: Influence of water-reducing admixtures on properties of cement pastes-a miniature slump test. Cem. Concr. and Aggre. 2(2), 95–102 (1980)CrossRefGoogle Scholar
  9. 9.
    Taylor, H.F.W.: Cement Chemistry, 2nd edn., p. 459. Thomas Telford, London (1997)Google Scholar
  10. 10.
    Alizadeh, R., Beaudoin, J.J., Ramachandran, V.S., Raki, L.: Applicability of Hedvall effect to study the reactivity of calcium silicate hydrates. Journal of Advances in Cement Research, 1–8 (2009) DOI: 10.1680/adcr.2008.00008Google Scholar
  11. 11.
    Pellenq, R.J.-M., Lequeux, N., Van Damme, H.: Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cem. Conc. Res. 38, 159–174 (2008)CrossRefGoogle Scholar
  12. 12.
    Constantinides, G., Ulm, F.-J.: The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Conc. Res. 34, 67–80 (2004)CrossRefGoogle Scholar
  13. 13.
    Feldman, R.F., Sereda, P.J.: A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction 1, 509–520 (1968)CrossRefGoogle Scholar
  14. 14.
    Alizadeh, R., Beaudoin, J.J., Raki, L.: C-S-H (I) - A Nanostructural model for the removal of water from hydrated cement paste. J. Am. Ceram. Soc. 90, 670–672 (2007)CrossRefGoogle Scholar
  15. 15.
    Alizadeh, R., Beaudoin, J.J., Raki, L.: Dynamic mechanical response of Calcium-Silicate-Hydrate systems, 47 (2009) (under preparation)Google Scholar
  16. 16.
    Matsuyama, H., Young, J.F.: Intercalation of Polymers in Calcium Silicate Hydrate: A New Synthetic Approach to Biocomposites? Chem. Mat. 11, 16–19 (1999)CrossRefGoogle Scholar
  17. 17.
    Beaudoin, J.J., Drame, H., Raki, L., Alizadeh, R.: Formation and properties of C-S-H - HDTMA nano-hybrids. J. Mat. Res. 23, 2804–2815 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Beaudoin, J.J., Patarachao, B., Raki, L., Alizadeh, R.: The interaction of methylene blue dye with calcium-silicate-hydrate. J. Am. Ceram. Soc. 92, 204–208 (2009)CrossRefGoogle Scholar
  19. 19.
    Beaudoin, J.J., Drame, H., Raki, L., Alizadeh, R.: Formation and properties of C-S-H - PEG nano-hybrids. Mat. Struct., 1–6 (2009) DOI: 10.1617/s11527-008-9439-xGoogle Scholar
  20. 20.
    Minet, J., Abramson, S., Bresson, B., Franceschini, A., Van Damme, H., Lequeux, N.: Organic calcium silicate hydrate hybrids: a new approach to cement based nanocomposites. J. Mater. Chem. 16, 1379–1383 (2006)CrossRefGoogle Scholar
  21. 21.
    Franceschini, A., Abramson, S., Mancini, V., Bresson, B., Chassenieux, C., Lequeux, N.: New covalent bonded polymer-calcium silicate hydrate composites. J. Mater. Chem. 17, 913–922 (2007)CrossRefGoogle Scholar
  22. 22.
    Matsuyama, H., Young, J.F.: Synthesis of calcium silicate hydrate/polymer complexes: Part I. J. Mater. Res. 14, 3379–3388 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • L. Raki
    • 1
  • J. J. Beaudoin
    • 1
  • R. Alizadeh
    • 1
  1. 1.Institute for Research in ConstructionNational Research CouncilCanada

Personalised recommendations