Advertisement

A Validation Scenario for a Placement Service in Learning Networks

  • Marco Kalz
  • Jan van Bruggen
  • Bas Giesbers
  • Ellen Rusman
  • Jannes Eshuis
  • Wim Waterink
Chapter

Abstract

In this chapter we describe a scenario for the validation of a placement service in Learning Networks. In Chap. 12 of this volume we described placement in Learning Networks as a case of Accreditation of Prior Learning (APL). We explained that placement in Learning Networks cannot assume the availability of data or metadata that allow for a direct or indirect coupling of data, such as competence descriptions, to the outcomes of learning activities. Even though such data may be available, their semantics are unknown, since there is no controlled vocabulary in Learning Networks. Open image in new window .

Keywords

Learn Network Student Document Placement Service Test Corpus General Corpus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bouma, G., Klein, E.H.: Volkskrant database and practicum [Data file] (2001). Retrieved May 12, 2005 from http://hagen.let.rug.nl/hklein/Volkskrant/Volkskrant/ http://hagen.let.rug.nl/hklein/pract_prainbow2.html
  2. Giles, J., Wo, L., Berry, M.: GTP (general text parser) software for text mining. In Software for Text Mining, in Statistical Data Mining and Knowledge Discovery, ed. by Bozdogan, H. (CRC Press, Boca Raton 2003) pp. 455–471Google Scholar
  3. Gounon P., Lemaire B.: Semantic comparison of texts for learning environments. In Advances in Artificial Intelligence – IBERAMIA. ed. by Garijo, F. J., Riquelme Santos, J. C., Toro, M. Lecture Notes in Computer Science, vol. 2527 (Springer, Berlin, Heidelberg, New York 2002) pp. 724–733Google Scholar
  4. Hüning, M.: TextStat Simple Text Analysis Tool. (Dutch Linguistics, Free University of Berlin, Berlin 2005). http://www.niederlandistik.fu-berlin.de/textstat/software-en.html Cited May 12, 2005
  5. Louwerse, M., Van Peer, W.: Waar het over gaat in cijfers: LSA als kwantitatieve benadering in tekst- en literatuurwetenschap [Where it's about in numbers: LSA as a quantitative approach in text and literature studies]. Tijdschr. Ned. Taal Let. 123, 22–36 (2007).Google Scholar
  6. Pellegrino, J. W., Chudowsky, N., Glaser, R. (eds): Knowing What Students Know: The Science and Design of Educational Assessment (National Academy Press, Washington, DC 2001)Google Scholar
  7. Skinner, K.: Continuing Professional Development for the Social Services Workforce in Scotland (Scottish Institute for Excellence in Social Work Education, Dundee 2005)Google Scholar
  8. Wiemer-Hastings, P., Graesser, A. C.: Select-a-Kibitzer: A computer tool that gives meaningful feedback on student compositions. Interact. Learn. Environ. 8, 149–169 (2000)CrossRefGoogle Scholar
  9. Zeimpekis, D., Gallopoulos, E.: TMG: a MATLAB toolbox for generating term document matrices from text collections. In Grouping Multidimensional Data: Recent Advances in Clustering, ed. by Kogan, J., Nicholas, C., Teboulle, M. (Springer, Berlin 2006) pp. 187–210.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marco Kalz
    • 1
  • Jan van Bruggen
    • 2
  • Bas Giesbers
    • 3
  • Ellen Rusman
    • 2
  • Jannes Eshuis
    • 4
  • Wim Waterink
    • 4
  1. 1.Centre for Learning Sciences and TechnologiesUniversity of Maastricht6200 MD MaastrichtThe Netherlands
  2. 2.Centre for Learning Sciences and TechnologiesOpen University of the Netherlands6419 AT HeerlenThe Netherlands
  3. 3.Faculty of Economics and Business AdministrationUniversity of Maastricht6200 MD MaastrichtThe Netherlands
  4. 4.Psychology DepartmentOpen University of the Netherlands6419 AT HeerlenThe Netherlands

Personalised recommendations