Split and Merge Based Story Segmentation in News Videos

  • Anuj Goyal
  • P. Punitha
  • Frank Hopfgartner
  • Joemon M. Jose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5478)

Abstract

Segmenting videos into smaller, semantically related segments which ease the access of the video data is a challenging open research. In this paper, we present a scheme for semantic story segmentation based on anchor person detection. The proposed model makes use of a split and merge mechanism to find story boundaries. The approach is based on visual features and text transcripts. The performance of the system was evaluated using TRECVid 2003 CNN and ABC videos. The results show that the system is in par with state-of-the-art classifier based systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Passonneau, R.J., Litman, D.J.: Discourse segmentation by human and automated means. Comput. Linguist. 23(1), 103–139 (1997)Google Scholar
  2. 2.
    Galley, M., McKeown, K., Fosler-Lussier, E., Jing, H.: Discourse segmentation of multi-party conversation. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, pp. 562–569. Association for Computational Linguistics (2003)Google Scholar
  3. 3.
    Arlandis, J., Over, P., Kraaij, W.: Boundary error analysis and categorization in the TRECVID news story segmentation task. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 103–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chua, T.S., Chang, S.F., Chaisorn, L., Hsu, W.: Story boundary detection in large broadcast news video archives: techniques, experience and trends. In: MM 2004, pp. 656–659. ACM, New York (2004)Google Scholar
  5. 5.
    Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: ICML 2000, pp. 359–366. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  6. 6.
    Kolb, P.: DISCO: A Multilingual Database of Distributionally Similar Words. In: KONVENS 2008 – Ergänzungsband: Textressourcen und lexikalisches Wissen (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anuj Goyal
    • 1
  • P. Punitha
    • 1
  • Frank Hopfgartner
    • 1
  • Joemon M. Jose
    • 1
  1. 1.Department of Computing ScienceUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations