Comparing the Usability of Performance Analysis Tools

  • Christian Iwainsky
  • Dieter an Mey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5415)


We take a look at the performance analysis tools Vampir, Scalasca, Sun Performance Analyzer and the Intel Trace Analyzer and Collector, which provide execution analysis of parallel programs for optimization and scaling purposes. We investigate, from a novice user’s point of view, to what extent these tools support frequently used programming languages and constructs, discuss their performance impact and the insight these tools provide focusing on the instrumentation and program analysis. For this we analyzed codes currently used at the RWTH Aachen University: XNS, DROPS and HPL.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shende, S.: Profiling and tracing in linux. In: Second Extreme Linux Workshop. USENIX, Monterey (June 1999)Google Scholar
  2. 2.
    Intel: Intel trace analyzer and collector 7.1,
  3. 3.
  4. 4.
    Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Proceedings of the 2nd HLRS Parallel Tools Workshop, Stuttgart, Germany (July 2008)Google Scholar
  5. 5.
    Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer, M., Hermanns, M., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.: Usage of the scalasca toolset for scalable performance analysis of large-scale parallel applications. In: Proceedings of the 2nd HLRS Parallel Tools Workshop, Stuttgart, Germany (July 2008)Google Scholar
  6. 6.
    Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a performance tool interface for openmp. J. Supercomput. 23(1), 105–128 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Groß, S., Peters, J., Reichelt, V., Reusken, A.: The DROPS package for numerical simulations of incompressible flows using parallel adaptive multigrid techniques. Technical report, RWTH Aachen (2002)Google Scholar
  8. 8.
    Terboven, C., Spiegel, A., an Mey, D., Groß, S., Reichelt, V.: Parallelization of the C++ navier-stokes solver DROPS with OpenMP. In: ParCo, Malaga, Spain. John von Neumann Institute for Computing Series, vol. 33 (2005)Google Scholar
  9. 9.
    Behr, M., Arora, D., Benedict, N.A., O’Neill, J.J.: Intel compilers on linux clusters. Intel Developer Services online publication (October 2002)Google Scholar
  10. 10.
    Petitet, A., Whaley, R.C., Dongarra, J.J., Cleary, A.: Hpl - a portable implementation of the high-performance linpack benchmark for distributed-memory computers,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Iwainsky
    • 1
  • Dieter an Mey
    • 1
  1. 1.Center for Computing and CommunicationRWTH Aachen UniversityGermany

Personalised recommendations