New Fossils and New Hope for the Origin of Angiosperms

Chapter

Abstract

Angiosperms are the dominant group in modern vegetation. Despite their importance and over hundred years of research effort since the Darwin age, we still do not know much about the origin of this important group. Recently, Schmeissneria has pushed the origin of angiosperms close to the Triassic and at the same time the angiosperms in the early Cretaceous also demonstrate diversity higher than expected, suggesting that angiosperms have occurred long before the currently recognized oldest fossil record, unlike the currently predominant doctrine states. In this chapter, I will briefly summarize the information about several Chinese and German fossil plants ranging from the Early Cretaceous to Early Jurassic in age. These fossils, in addition to others, indicate that much of the angiosperm diversity was extinct before the Cretaceous, many pre-Cretaceous angiosperms may have no direct relationship with living angiosperms, and the key to the abominable mystery may lie in fossil plants that are unknown to scientists yet.

References

  1. Chamberlain CJ (1957) Gymnosperms, structure and evolution. Johnson Reprint Corporation, New YorkGoogle Scholar
  2. Cornet B (1986) The leaf venation and reproductive structures of a late Triassic angiosperm, Sanmiguelia lewisii. Evol Theory 7:231–308Google Scholar
  3. Cornet B (1989a) Late Triassic angiosperm-like pollen from the Richmond rift basin of Virginia, USA. Paläontogr B 213:37–87Google Scholar
  4. Cornet B (1989b) The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the late Triassic. Evol Trends Plants 3:25–51Google Scholar
  5. Cornet B (1993) Dicot-like leaf and flowers from the late Triassic tropical Newark Supergroup rift zone, USA. Mod Biol 19:81–99Google Scholar
  6. Cornet B, Habib D (1992) Angiosperm-like pollen from the ammonite-dated Oxfordian (upper Jurassic) of France. Rev Palaeobot Palynol 71:269–294CrossRefGoogle Scholar
  7. Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Miss Bot Gard 72:716–793CrossRefGoogle Scholar
  8. Cronquist A (1988) The evolution and classification of flowering plants Botanical Garden, Bronx, New YorkGoogle Scholar
  9. Dilcher DL, Sun G, Ji Q, Li H (2007) An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Nat Acad Sci USA 104:9370–9374CrossRefPubMedGoogle Scholar
  10. Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Intl J Plant Sci 169:816–843CrossRefGoogle Scholar
  11. Duan S (1998) The oldest angiosperm—a tricarpous female reproductive fossil from western Liaoning Province, NE China. Sci Chin D 41:14–20CrossRefGoogle Scholar
  12. Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill, New YorkGoogle Scholar
  13. Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Intl J Plant Sci 161:S211–S223CrossRefGoogle Scholar
  14. Friedman WE (1990) Sexual reproduction in Ephedra nevadensis (Ephedraceae): further evidence of double fertilization in a nonflowering seed plant. Am J Bot 77:1582–1598CrossRefGoogle Scholar
  15. Friedman WE (1991) Double fertilization in Ephedra trifurca, a non flowering seed plant: the relationship between fertilization events and the cell cycle. Protoplasma 165:106–120CrossRefGoogle Scholar
  16. Friedman WE (1992) Double fertilization in nonflowering seed plants. Int Rev Cytol 140:319–355CrossRefGoogle Scholar
  17. Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opin Plant Biol 8:5–12CrossRefPubMedGoogle Scholar
  18. Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeo Palaeoclim Palaeoecol 232:251–293CrossRefGoogle Scholar
  19. Harris TM (1940) Caytonia. Ann Bot 4:713–734CrossRefGoogle Scholar
  20. Harris TM (1964) Caytoniales, Cycadales & Pteridosperms. Trustees of the British Museum (Natural History), LondonGoogle Scholar
  21. Hochuli PA, Feist-Burkhardt S (2004) A boreal early cradle of angiosperms? Angiosperm-like pollen from the middle Triassic of the Barents Sea (Norway). J Micropalaeont 23:97–104CrossRefGoogle Scholar
  22. Hughes N (1994) The enigma of angiosperm origins. Cambridge University Press, CambridgeGoogle Scholar
  23. Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004) Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin 78:883–896Google Scholar
  24. Judd WS, Campbell SC, Kellogg EA, Stevens PF (1999) Plant systematics: a phylogenetic approach. Sinauer, Sunderland, MAGoogle Scholar
  25. Kirchner M (1992) Untersuchungen an einigen Gymnospermen der Fränkischen Rhät-Lias-Grenzschichten. Paläontogr B 224:17–61Google Scholar
  26. Kirchner M, Van Konijnenburg-Van Cittert JHA (1994) Schmeissneria microstachys (Presl, 1833) Kirchner et Van Konijnenburg-Van Cittert, comb. nov. and Karkenia hauptmannii Kirchner et Van Konijnenburg-Van Cittert, sp. nov., plants with ginkgoalean affinities from the Liassic of Germany. Rev Palaeobot Palynol 83:199–215CrossRefGoogle Scholar
  27. Krassilov V, Lewy Z, Nevo E (2004) Controversial fruit-like remains from the lower Cretaceous of the Middle East. Cret Res 25:697–707CrossRefGoogle Scholar
  28. Krassilov VA (1982) Early Cretaceous flora of Mongolia. Paläontogr Abt B 181:1–43Google Scholar
  29. Kryshtofovich A (1982) Pleuromeia and Hausmannia in eastern Sibiria, with a summary of recent contribution to the palaeobotany of the region. Am J Sci 5:200–208CrossRefGoogle Scholar
  30. Leng Q, Friis EM (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol 241:77–88CrossRefGoogle Scholar
  31. Leng Q, Friis EM (2006) Angiosperm leaves associated with Sinocarpus Leng et Friis infructescences from the Yixian Formation (mid-Early Cretaceous) of NE China. Plant Syst Evol 262:173–187CrossRefGoogle Scholar
  32. Li H, Taylor DW (1998) Aculeovinea yunguiensis gen. et sp. nov. (Gigantopteridales), a new taxon of gigantopterid stem from the upper Permian of Guizhou province, China. Int J Plant Sci 159:1023–1033CrossRefGoogle Scholar
  33. Li H, Tian B, Taylor EL, Taylor TN (1994) Foliar anatomy of Gigantonoclea guizhouensis (Gigantopteridales) from the upper Permian of Guizhou province, China. Am J Bot 81:678–689CrossRefGoogle Scholar
  34. Li H, Taylor EL, Taylor TN (1996) Permian vessel elements. Science 271:188–189CrossRefGoogle Scholar
  35. Pan G (1983) The Jurassic precursors of angiosperms from Yanliao region of North China and the origin of angiosperms. Chin Sci Bull 28:15–20Google Scholar
  36. Pocock SAJ, Vasanthy G (1988) Cornetipollis reticulata, a new pollen with angiospermid features from Upper Triassic (Carnian) sediments of Arizona (USA), with notes on Equisetosporites. Rev Palaeobot Palynol 55:337–356CrossRefGoogle Scholar
  37. Potonie H (1921) Lehrbuch der Paläobotanik. Verlag von Gebrüder Borntraeger, Berlin, MAGoogle Scholar
  38. Presl KB (1838) In: Sternberg KM (ed) Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. Johann Spurny, Prag, pp 81–220Google Scholar
  39. Retallack G, Dilcher DL (1981) Arguments for glossopterid ancestry of angiosperms. Palaeobiol 7:54–67Google Scholar
  40. Rothwell GW (1972) Evidence of pollen tubes in Paleozoic pteridosperms. Science 175:772–724CrossRefPubMedGoogle Scholar
  41. Schenk A (1867) Die fossile Flora der Grenzschichten des Keupers und Lias Frankens. C.W. Kreidel's Verlag, WiesbadenGoogle Scholar
  42. Schenk A (1890) Paläophytologie. Druck und Verlag von R. Oldenbourg, MünchenGoogle Scholar
  43. Scott RA, Barghoorn ES, Leopold EB (1960) How old are the angiosperms? Am J Sci 258A:284–299Google Scholar
  44. Shen GL, Gu ZG, Li KD (1976) More material of Hausmannia ussuriensis from Jingyuan, Gansu. J Lanzhou Univ 3:71–81Google Scholar
  45. Sporne KR (1971) The morphology of gymnosperms, the structure and evolution of primitive seed plants. Hutchinson University Library, LondonGoogle Scholar
  46. Stevens PF (2008) Angiosperm Phylogeny Website. http://www.mobot.org/MOBOT/research/APweb/. Cited 12 December 2008
  47. Sun G (1981) Discovery of Dipteridaceae from the upper Triassic of eastern Jilin. Acta Palaeontol Sin 20:459–467Google Scholar
  48. Sun G (1993) Late Triassic flora from Tianqiaoling of Jilin, China. Jilin Science & Technology Press, ChangchunGoogle Scholar
  49. Sun G, Dilcher DL, Zheng S, Zhou ZK (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692–1695CrossRefPubMedGoogle Scholar
  50. Sun G, Zheng S, Dilcher D, Wang Y, Mei S (2001) Early angiosperms and their associated plants from Western Liaoning, China. Shanghai Technology & Education Press, ShanghaiGoogle Scholar
  51. Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904CrossRefPubMedGoogle Scholar
  52. Swisher CC, Wang Y-Q, Wang X-L, Xu X, Wang Y (1998) 40Ar/39Ar dating of the lower Yixian Fm, Liaoning Province, northeastern China. Abstract in the 9th International Conference on Geochronology, Cosmochronology and Isotope Geology (August 20–26, 1998), Beijing, China. Chinese Science Bulletin 43:125CrossRefGoogle Scholar
  53. Taylor DW, Li H, Dahl J, Fago FJ, Zinniker D, Moldowan JM (2006) Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology 32:179–190CrossRefGoogle Scholar
  54. Thomas HH (1925) The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Phil Trans Roy Soc Lond 213B:299–363Google Scholar
  55. Tomlinson PB, Takaso T (2002) Seed cone structure in conifers in relation to development and pollination: a biological approach. Can J Bot 80:1250–1273CrossRefGoogle Scholar
  56. Wang X (submitted) Schmeissneria: An early Jurassic angiosperm from Germany. Am J BotGoogle Scholar
  57. Wang X, Duan S, Geng B, Cui J, Yang Y (2007a) Is Jurassic Schmeissneria an angiosperm? Acta Palaeontol Sin 46:486–490 (in Chinese, with English abstract)Google Scholar
  58. Wang X, Duan S, Geng B, Cui J, Yang Y (2007b) Schmeissneria: a missing link to angiosperms? BMC Evol Biol 7:14CrossRefPubMedGoogle Scholar
  59. Wang X, Wang S (in press) Xingxueanthus: An enigmatic Jurassic seed plant and its implications for the origin of angiospermy. Acta Geol SinGoogle Scholar
  60. Wang X, Zheng S (2009) The earliest normal flower from Liaoning Province, China. J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2009.00838.xGoogle Scholar
  61. Wcislo-Luraniec E (1992) A fructification of Stachyopitys preslii Schenk from the lower Jurassic of Poland. Cour Forsch-Institut Senck 147:247–253Google Scholar
  62. Weng J-K, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Nat Acad Sci USA 105:7887–7892CrossRefPubMedGoogle Scholar
  63. Wu S-Q (1999) A preliminary study of the Jehol flora from the western Liaoning. Palaeoworld 11:7–37Google Scholar
  64. Xu R (1987) Do fossil angiosperms really occur in Jurassic beds of the Yanshan-Liaoning area, north China. Kexue Tongbao 32:1712–1714Google Scholar
  65. Yang Y, Fu DZ, Wen LH (2000) On double fertilization in Ephedra. Adv Plant Sci 3:67–74Google Scholar
  66. Zavada MS (1984) Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann Miss Bot Gard 71:444–463CrossRefGoogle Scholar
  67. Zavada MS (2007) The identification of fossil angiosperm pollen and its bearing on the time and place of the origin of angiosperms. Plant Syst Evol 263:117–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Nanjing Institute of Geology and PalaeontologyNanjingChina
  2. 2.Fairylake Botanical GardenShenzhenChina

Personalised recommendations