Metaheuristics for Tourist Trip Planning

  • Pieter Vansteenwegen
  • Wouter Souffriau
  • Greet Vanden Berghe
  • Dirk Van Oudheusden
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 624)


The aim of this paper is to present an overview of metaheuristics used in tourism and to introduce Skewed VNS to solve the team orienteering problem (TOP). Selecting the most interesting points of interest and designing a personalised tourist trip, can be modelled as a TOP with time windows (TOPTW). Guided local search (GLS) and variable neighbourhood search (VNS) are applied to efficiently solve the TOP. Iterated local search (ILS) is implemented to solve the TOPTW. The GLS and VNS algorithms are compared with the best known heuristics and applied on large problem sets. The obtained results are almost of the same quality as the results of these heuristics but the computational time is reduced significantly. For some of the problems VNS calculates new best solutions. The results of the ILS algorithm, applied to large problem sets, have an average gap with the optimal solution of only 2.7%, with much less computational effort.


Guided local search Iterated local search Team orienteering problem with time windows Variable neighbourhood search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Hare, G., O’Grady, M.: Gulliver’s Genie: a multi-agent system for ubiquitous and intelligent content delivery. Comput. Commun. 26, 1177–1187 (2002)CrossRefGoogle Scholar
  2. 2.
    Davies, N., Cheverst, K., Mitchell, K., Efrat, A.: Using and determining location in a context-sensitive tour guide. IEEE Computer 34(8), 35–41 (2001)Google Scholar
  3. 3.
    Schmidt-Belz, B., Laamanen, H., Poslad, S., Zipf, A.: Location-based mobile tourist services – first user experiences. In: Enter 2003, Helsinki, Finland (2003)Google Scholar
  4. 4.
    Edwards, S., Blythe, Ph., Scott, S., Weihong-Guo, A.: Tourist Information Delivered Through Mobile Devices: Findings from the IMAGE Project. Inf. Technol. Tour. 8, 31–46 (2006)CrossRefGoogle Scholar
  5. 5.
    Ten Hagen, K., Kramer, R., Hermkes, M., Schumann, B., Mueller, P.: Semantic matching and heuristic search for a dynamic tour guide. In: Frew, A., Hitz, M., O’Connor, P. (eds.) Information and communication technologies in tourism. Springer, Vienna (2005)Google Scholar
  6. 6.
    Souffriau, W., Vansteenwegen, P., Vertommen, J., Vanden Berghe, G., Van Oudheusden, D.: A personalised tourist trip design algorithm for mobile tourist guides. Appl. Artif. Intell. 22, 964–985 (2008)CrossRefGoogle Scholar
  7. 7.
    Vansteenwegen, P., Van Oudheusden, D.: The mobile tourist guide: an OR opportunity. OR Insights 20(3), 21–27 (2007)Google Scholar
  8. 8.
    Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35, 797–809 (1984)CrossRefGoogle Scholar
  9. 9.
    Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Appl. Math. 26, 193–207 (1990)CrossRefGoogle Scholar
  10. 10.
    Butt, S., Cavalier, T.: A heuristic for the multiple tour maximum collection problem. Comput. Oper. Res. 21, 101–111 (1994)CrossRefGoogle Scholar
  11. 11.
    Arkin, E., Mitchell, J., Narasimhan, G.: Resource-constrained geometric network optimization. In: Proceedings of the 14th ACM Symposium on Computational Geometry, 307–316 (1998)Google Scholar
  12. 12.
    Pekny, J., Miller, D.: An exact parallel algorithm for the resource constrained travelling salesman problem with application to scheduling with an aggregate deadline. In: Proceedings of the 1990 ACM Annual Conference on Cooperation (1990)Google Scholar
  13. 13.
    Feillet, D., Dejax, P., Gendreau, M.: Travelling salesman problems with profits. Transport. Sci. 39, 188–205 (2005)CrossRefGoogle Scholar
  14. 14.
    Righini, G., Salani, M.: Dynamic programming for the orienteering problem with time windows. Technical Report 91, Dipartimento di Tecnologie dell’Informazione, Universita degli Studi Milano, Crema, Italy (2006)Google Scholar
  15. 15.
    Chao, I., Golden, B., Wasil, E.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88, 475–489 (1996)CrossRefGoogle Scholar
  16. 16.
    Golden, B., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logistics 34, 307–318 (1987)CrossRefGoogle Scholar
  17. 17.
    Tang, H., Miller-Hooks, E.: A Tabu search heuristic for the team orienteering problem. Comput. Oper. Res. 32, 1379–1407 (2005)CrossRefGoogle Scholar
  18. 18.
    Archetti, C., Hertz, A., Speranza, M.: Metaheuristics for the team orienteering problem. J. Heuristics 13, 49–76 (2007)CrossRefGoogle Scholar
  19. 19.
    Kantor, M., Rosenwein, M.: The orienteering problem with time windows. J. Oper. Res. Soc. 43(6), 629–635 (1992)CrossRefGoogle Scholar
  20. 20.
    Bar-Yehuda, R., Even, G., Shahar, S.: On approximating a geometric prize-collecting travelling salesman problem with time windows. J. Algorithms 55, 76–92 (2005)CrossRefGoogle Scholar
  21. 21.
    Chao, I., Golden, B., Wasil, E.: The team orienteering problem. Eur. J. Oper. Res. 88, 464–474 (1996)CrossRefGoogle Scholar
  22. 22.
    Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)Google Scholar
  23. 23.
    Voudouris, C., Tsang, E.: Guided local search and its application to the travelling salesman problem. Eur. J. Oper. Res. 113, 469–499 (1999)CrossRefGoogle Scholar
  24. 24.
    Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: A guided local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res. 196(1), 118–127 (2008). doi: 10.1016/j.ejor.2008.02.037CrossRefGoogle Scholar
  25. 25.
    Hansen, P., Mladenovic, N.: Variable neighbourhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)CrossRefGoogle Scholar
  26. 26.
    Chao, I.: Algorithms and solutions to multi-level vehicle routing problems. Ph.D. Dissertation, Applied Mathematics Program, University of Maryland, College Park, USA (1993)Google Scholar
  27. 27.
    Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of metaheuristics, pp. 321–353. Kluwer, Norwel (2003)Google Scholar
  28. 28.
    Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: Iterated local search for the team orienteering problem with time windows. Working paper 2008–08, Centre for Industrial Management, Katholieke Universiteit Leuven, Belgium (2008)Google Scholar
  29. 29.
    Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: Automated parameterisation of a metaheuristic for the orienteering problem. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and multilevel metaheuristics. Studies in Computational Intelligence, pp. 255–269. Springer, Berlin, (2008). ISBN: 978-3-540-79437-0, doi:10.1007/978-3-540-79438-7_13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pieter Vansteenwegen
    • 1
  • Wouter Souffriau
    • 1
  • Greet Vanden Berghe
    • 1
  • Dirk Van Oudheusden
    • 1
  1. 1.Centre for Industrial ManagementKatholieke Universiteit LeuvenCelestijnenlaanBelgium

Personalised recommendations