Advertisement

Dimension-Specific Search for Multimedia Retrieval

  • Zi Huang
  • Heng Tao Shen
  • Dawei Song
  • Xue Li
  • Stefan Rueger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5463)

Abstract

Observing that current Global Similarity Measures (GSM) which average the effect of few significant differences on all dimensions may cause possible performance limitation, we propose the first Dimension-specific Similarity Measure (DSM) to take local dimension-specific constraints into consideration. The rationale for DSM is that significant differences on some individual dimensions may lead to different semantics. An efficient search algorithm is proposed to achieve fast Dimension-specific KNN (DKNN) retrieval. Experiment results show that our methods outperform traditional methods by large gaps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assent, I., Wenning, A., Seidl, T.: Approximation techniques for indexing the earth mover’s distance in multimedia databases. In: ICDE, p. 11 (2006)Google Scholar
  2. 2.
    Böhm, C., Berchtold, S., Keim, D.: Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Computing Surveys 33(3), 322–373 (2001)CrossRefGoogle Scholar
  3. 3.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB, pp. 426–435 (1997)Google Scholar
  4. 4.
    de Vries, A., Mamoulis, N., Nes, N., Kersten, M.: Efficient k-NN search on vertically decomposed data. In: SIGMOD, pp. 322–333 (2002)Google Scholar
  5. 5.
    Jagadish, H., Ooi, B., Tan, K., Yu, C., Zhang, R.: idistance: An adaptive b+-tree based indexing method for nearest neighbor searc. TODS 30(2), 364–379 (2005)CrossRefGoogle Scholar
  6. 6.
    Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In: VLDB, pp. 950–961 (2007)Google Scholar
  7. 7.
    Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for similarity search methods in high dimensional spaces. In: VLDB, pp. 194–205 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zi Huang
    • 1
  • Heng Tao Shen
    • 1
  • Dawei Song
    • 2
  • Xue Li
    • 1
  • Stefan Rueger
    • 3
  1. 1.School of ITEEThe University of QueenslandAustralia
  2. 2.School of ComputingThe Robert Gordon UniversityUK
  3. 3.Knowledge Media instituteThe Open UniversityUK

Personalised recommendations