Advertisement

Breaking and Repairing Damgård et al. Public Key Encryption Scheme with Non-interactive Opening

  • David Galindo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5473)

Abstract

We show a simple chosen-ciphertext attack against a public key encryption scheme with non-interactive opening (PKENO) presented by Damgård, Kiltz, Hofheinz and Thorbek in CT-RSA 2008. In a PKENO scheme a receiver can convincingly reveal to a verifier what the result of decrypting a ciphertext C is, without interaction and without compromising the confidentiality of non-opened ciphertexts. A special interesting feature of PKENO is that a verifier can even ask for opening proofs on invalid ciphertexts. Those opening proofs will convince the verifier that the ciphertext was indeed invalid. We show that one of the schemes by Damgård et al. does not achieve the claimed security goal. Next we provide a fix for it. The repaired scheme presents essentially no overhead and is proven secure under the Decisional Bilinear Diffie-Hellman assumption in the standard model.

Keywords

identity-based encryption public key encryption non-interactive proofs standard model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BF03]
    Boneh, D., Franklin, M.K.: Identity-Based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003); this is the full version of an extended abstract of the same title presented at in: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BMW05]
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM Conference on Computer and Communications Security 2005, pp. 320–329 (2005)Google Scholar
  3. [BSS05]
    Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  4. [CEvdG87]
    Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  5. [CHK04]
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [DHKT08]
    Damgård, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with non-interactive opening. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. [DT07]
    Damgård, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. [Gol01]
    Goldreich, O.: Foundations of Cryptography - Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  9. [HK08]
    Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. [Jou00]
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. [Wat05]
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Galindo
    • 1
  1. 1.University of LuxembourgLuxembourg

Personalised recommendations