A CCA2 Secure Public Key Encryption Scheme Based on the McEliece Assumptions in the Standard Model

  • Rafael Dowsley
  • Jörn Müller-Quade
  • Anderson C. A. Nascimento
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5473)

Abstract

We show that a recently proposed construction by Rosen and Segev can be used for obtaining the first public key encryption scheme based on the McEliece assumptions which is secure against adaptive chosen ciphertext attacks in the standard model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the Inherent Intractability of Certain Coding Problems. IEEE Trans. Inf. Theory 24, 384–386 (1978)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem, http://eprint.iacr.org/2008/318
  3. 3.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to primitive narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a mcEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. SIAM J. Comput. 30(2), 391–437 (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Goldwasser, S., Vaikuntanathan, V.: Correlation-secure trapdoor functions from lattices (manuscript) (2008)Google Scholar
  10. 10.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB +  protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Lindell, Y.: A Simpler Construction of CCA2-Secure Public-Key Encryption under General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory. In: Deep Space Network progress Report (1978)Google Scholar
  14. 14.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: 21st STOC, pp. 33–43 (1989)Google Scholar
  15. 15.
    Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic Security for the McEliece Cryptosystem without Random Oracles. In: Proceedings of International Workshop on Coding and Cryptography (WCC), INRIA, pp. 257–268 (2007); journal version in Designs. Codes and Cryptography 49(1-3), 289–305 (December 2008) Google Scholar
  16. 16.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC 2008. pp. 187–196 (2008)Google Scholar
  17. 17.
    Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  19. 19.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products (2008), http://eprint.iacr.org/2008/116
  20. 20.
    Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen- Ciphertext Security. In: 40th FOCS, pp. 543–553 (1999)Google Scholar
  21. 21.
    Sendrier, N.: Finding the Permutation Between Equivalent Linear Codes: The Support Splitting Algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rafael Dowsley
    • 1
  • Jörn Müller-Quade
    • 2
  • Anderson C. A. Nascimento
    • 1
  1. 1.Department of Electrical EngineeringUniversity of BrasiliaBrasiliaBrazil
  2. 2.Institut für Algorithmen und Kognitive SystemeUniversität KarlsruheKarlsruheGermany

Personalised recommendations