Noise and Periodic Terms in the EPN Time Series

  • A. Kenyeres
  • C. Bruyninx
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 134)


The EUREF Permanent Network (EPN) has been installed in 1996 with some 30 stations and now includes more than 190 permanent GNSS sites (see Fig. 1). The network is operated according to the standards of the International GNSS Service (IGS) and it is considered as a regional densification of the ITRF (International Terrestrial Reference Frame). The EPN is primarily a geodetic reference network, but its results are also widely used for geophysical studies. In order to better serve the user needs, the EUREF Time Series Analysis special project monitors the weekly combined SINEX solutions, cleans the individual station coordinate series, and maintains and publishes the database of the detected coordinate offsets and outliers. Using this info, cleaned cumulative solutions are then computed with the CATREF software (Altamimi et al 2004). The estimated coordinates and velocities, together with the outlier and offset database are regularly updated and published on the EPN CB website ( ).

In this study we focus on the noise and harmonic analysis of the EPN coordinate series. The analysis is done with the CATS software (Williams SD, Proudman Oceanographic Laboratory), which uses a MLE (Maximum Likelihood Estimator) to determine the noise characteristic and seasonal variation of the coordinate time series. The EPN weekly SINEX files from GPS week 860 to 1385 are involved in the computations.

We proved the presence of the colored noise in the EPN time series. The harmonic analysis showed moderate seasonal amplitudes. The phase lag distribution for the horizontal components are not random, well determined phase lag values were found. The Up component shows a more diffuse phase lag distribution. The physical reality of the phase lag values are not discussed here.


reference network EUREF, time series analysis annual periodicity noise analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi, Z., Sillard, P., Boucher, C. (2001). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. JGR, 107(B10), 2214, DOI:10.1029/2001JB000561CrossRefGoogle Scholar
  2. Altamimi, Z., Sillard, P., Boucher, C. (1994). CATREF software: Combination and analysis of terrestrial reference frames. LAREG Technical Note SP08, Institut Géographique National, France.Google Scholar
  3. Altamimi, Z, (2006). Strengths and Limitations of the ITRF: ITRF2005 and beyond. Proceedings of the GRF2006 Symposium, 9-14 October, 2006, Munich, Germany (in this volume).Google Scholar
  4. Beutler, G., Bock, H., Brockmann, E., Dach, R., Fridez, P., Gurtner, W., Habrich, H., Hugentobler, U., Ineichen, D., Jaeggi, A., Meindl, M., Mervart, L., Rothacher, M., Schaer, S., Schmid, R., Springer, T., Steigenberger, P., Svehla, D., Thaller, D., Urschl, C., Weber, R. (2006). Bernese GPS software version 5.0. ed. Urs Hugentobler, R. Dach, P. Fridez, M. Meindl, Univ. Bern, 464 ppGoogle Scholar
  5. Blewitt, G., Lavallee, D. (2002). Effect of annual signals on geodetic velocity. JGR, 107(B7), DOI: 10.1029/2001JB00570Google Scholar
  6. Blewitt, G., Lavallee, D., Clarke, P., Nurutdinov, K. (2001). A New Global Mode of Earth Deformation: Seasonal Cycle Detected. Science, Vol. 294, No. 5550, pp.2342-2345, 2001. DOI: 10.1126/science.1065328CrossRefGoogle Scholar
  7. Bruyninx, C., Carpentier, G., Defraigne, P. (2005). Analysis of the coordinate differences caused by different methods to align the combined EUREF solution to ITRF. EUREF Publication No.15, Mitteilungen des BKGs, Band 38, pp.330-338-Google Scholar
  8. Kenyeres, A., Bruyninx, C. (2004). EPN coordinate time series monitoring for reference frame maintenance. GPS Solutions, Vol.8 pp.200-209, DOI:10.1007/s10291-004-0103-9.CrossRefGoogle Scholar
  9. Mao, A., Harrison, C.G.A., Dixon, T.H. (1999). Noise in GPS coordinate time series. JGR, 104(B2), pp.2797-2816.CrossRefGoogle Scholar
  10. Tregoning, P., van Dam, T. (2005): Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. JGR, 110(B3408), DOI:10.1029/2004JB003334.Google Scholar
  11. van Dam, T., Wahr, J., Milly, P.C.D., Shmakin, AB., Blewitt, G., Lavallée, D., Larson, KM. (2001). Crustal displacements due to continental water loading. Geophys. Res. Letters, 28(4), pp.651-654.CrossRefGoogle Scholar
  12. van Dam, T., Wahr, J., King, M. (2005). Geophysical and Non-geophysical Annual Signals in European IGS Height time Series. Presented at the IAG Scientific Assembly, August, 2005, Cairns, Australia.Google Scholar
  13. Williams, S.D.P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M, Prawirodirdjo, L., Miller, M., Johnson, D.J. (2004). Error analysis of continuous GPS position time series. JGR, 109(B03412), DOI: 101029/2003JB002741.Google Scholar
  14. Williams, S.D.P. (2003). The effect of colored noise in the uncertainties of rates estimated from geodetic time series. Journal of Geodesy, 76(483-494), DOI: 10.1007/s00190-002-283-4.CrossRefGoogle Scholar
  15. Wessel, P. - Smith, W.H.F. (1998). New, improved version of Generic Mapping Tools released, EOS Trans. AGU, Vol.79(47), pp.579.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Kenyeres
    • 1
  • C. Bruyninx
    • 1
  1. 1.FÖMI Satellite Geodetic ObservatoryBudapestHungary

Personalised recommendations