The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as Basis for a Non-Rotating ITRF

  • Hermann Drewes
Chapter
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 134)

Abstract

A present-day plate kinematic and crustal deformation model is needed as a reference system for station velocities in the ITRF. The common rotation of all points of the Earth surface has to become zero in order to be consistent with Earth rotation parameters (condition of no net rotation, NNR). To realize this condition, we divide the surface into rigid plates and inter-plate deformation zones. Both, plate motions and deformations are modelled from the observed station velocities. The plate motions are represented by one rotation vector per plate, the inter-plate deformations are computed using a least squares collocation approach. In the APKIM2005, rotation vectors of 17 major plates and deformations in five plate boundary zones (Alps-Aegean, Persia-Tibet-Burma, Alaska-Yukon, Gorda-California, Andes) are estimated. The global integration is done in a 1°x1° grid covering the entire Earth surface. The ITRF2005 velocities result in a rotation of about 0.06 mas/year compared with the non-rotating terrestrial reference frame.

Keywords

Reference system reference frame plate kinematics crust deformation APKIM ITRF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi, Z., P. Sillard, C. Boucher: ITRF2000 (2002).A new release of the International Terrestrial Reference Frame for Earth science applications. J. Geophys. Res. (107) B10, 2214, 19 pp, doi:10.1029/2001JB000561.CrossRefGoogle Scholar
  2. Altamimi, Z., P. Sillard, C. Boucher (2003). The impact of a no-net-rotation condition on ITRF2000. Geophys. Res. Lett. (30)1-4,GL016279.Google Scholar
  3. Altamimi, Z., P. Sillard, C. Boucher (2004).ITRF2000: From theory to implementation.Springer, IAG Symposia,Vol. 127, 157-163.Google Scholar
  4. Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, C. Boucher (2007).ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res.,112, B09401, doi:10.1029/2007JB004949.CrossRefGoogle Scholar
  5. Bird, P. (2003). An updated digital model of plate boundaries. G3: Geochemistry, Geophysics, Geosystems, 4, No. 3, 1027, 52 pp.CrossRefGoogle Scholar
  6. DeMets, C., R. Gordon, D.F. Argus, S. Stein (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21, 2191-2194.CrossRefGoogle Scholar
  7. Drewes, H. (1982). A geodetic approach for the recovery of global kinematic plate parameters. Bull. Geod. (56) 70-79.Google Scholar
  8. Drewes, H. (1986). Significance of kinematic plate parameters derived from satellite Laser ranging data. Advances in Space Research, 6, No. 9, 67-70.CrossRefGoogle Scholar
  9. Drewes, H. (1990). Global plate motion parameters derived from actual space geodetic observations. In: Vyskocil, P., Reigber, C., Cross, P.A. (Eds.), Global and Regional Geodynamics, Springer IAG Symposia, Vol. 101, 30-37.Google Scholar
  10. Drewes, H. (1998). Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. Springer IAG Symposia, Vol. 119, 377-382.Google Scholar
  11. Drewes, H., D. Angermann, M. Krügel, B. Meisel, M. Gerstl (2007): ITRF2005 solution of DGFI (ITRF 2005D). Dt. Geod. Komm., München, Reihe B, Nr. 316.Google Scholar
  12. Drewes, H., O. Heidbach (2005): Deformation of the South American crust estimated from finite element and collocation methods. Springer, IAG Symposia, Vol. 128, 544-549.Google Scholar
  13. Drewes, H., B. Meisel (2003). An actual plate motion and deformation model as a kinematic terrestrial reference system. Geotechnologien Science Report No. 3, 40-43.Google Scholar
  14. Heidbach, O., H. Drewes (2003): 3-D finite element model of major tectonic processes in the Eastern Mediterranean. Geol. Soc. Spec. Publs. (212) 261-274, London.Google Scholar
  15. McCarthy, D.D. (2003). IERS Conventions (2003). IERS Technical Note, 32, BKG, Frankfurt.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hermann Drewes
    • 1
  1. 1.Deutsches Geodätisches ForschungsinstitutMünchenGermany

Personalised recommendations