Advertisement

Combination of Earth Orientation Parameters and Terrestrial Frame at the Observation Level

  • D. Gambis
  • R. Biancale
  • T. Carlucci
  • J.M. Lemoine
  • J.C. Marty
  • G. Bourda
  • P. Charlot
  • S. Loyer
  • T. Lalanne
  • L. Soudarin
  • F. Deleflie
Chapter
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 134)

Abstract

A rigorous approach to simultaneously determine both a terrestrial reference frame (TRF) materialized by station coordinates and Earth Orientation Parameters (EOP) is now currently applied on a routine basis in a coordinated project of the Groupe de Recherches de Géodésie Spatiale (GRGS). To date, various techniques allow the determination of all or a part of the Earth Orientation Parameters: Laser Ranging to the Moon (LLR) and to dedicated artificial satellites (SLR), Very Large Baseline Interferometry on extra-galactic sources (VLBI), Global Positioning System (GPS) and more recently DORIS introduced in the IERS activities in 1995. Observations of the different astro-geodetic techniques are separately processed at different analysis centres using unique software package GINS DYNAMO, developed and maintained at GRGS. The datum-free normal equation matrices weekly derived from the analyses of the different techniques are then stacked to derive solutions of station coordinates and Earth Orientation Parameters (EOP). Two approaches are made: the first one consists to accumulate normal equations (NEQs) derived from intra-technique single run solution in a single run combined solution; the second one leads to weekly combinations of NEQs. Results are made available at the IERS site (ftp iers1.bkg.bund.de) in the form of SINEX files. The strength of the method is the use of a set of identical up-to-date models and standards in unique software for all techniques. In addition the solution benefits from mutual constraints brought by the various techniques; in particular UT1 and nutation offsets series derived from VLBI are densified and complemented by respectively LOD and nutation rates estimated by GPS. The analyses we have performed over the first four months of the year 2006 are still preliminary; they show that the accuracy and stability of the EOP solution are very sensitive to a number of critical parameters mostly linked to the terrestrial reference frame realization, the way that minimum constraints are applied and the quality of local ties. We present thereafter the procedures which were applied, recent analyses and the latest results obtained.

Keywords

Earth rotation terrestrial reference frames robust combination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi, Z., P. Sillard, C. Boucher (2002). ITRF2000: A new Release of the International Terrestrial Reference Frame for Earth Science Applications. J. Geophys. Res. 107(B10), 2214, doi: 10.1029/2001JB000561.CrossRefGoogle Scholar
  2. Altamimi, Z., C. Boucher and D. Gambis (2005). Single run Stability of the Terrestrial Reference Frame, Adv. Space Res. 33(6): 342-349.CrossRefGoogle Scholar
  3. Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt and C. Boucher (2007). ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi: 10.1029/2007JB004949.Google Scholar
  4. Andersen, PH. (2000). Multi-level arc combination with stochastic parameters. J. of Geod. 74(7-8): 531-551.CrossRefGoogle Scholar
  5. Angermann, D., H. Drewes, M. Krügel, B. Meisel, M. Gerstl, R. Kelm, H. Müller, W. Seemüller and V. Tesmer (2004). ITRS Combination Center at DGFI: A terrestrial reference frame realization 2003. Deutsche Geodätische Kommission, Reihe B, Heft Nr. 313, Munich.Google Scholar
  6. Coulot, D., P. Berio, R. Biancale, S. Loyer, L. Soudarin, A.-M. Gontier (2007). Toward a direct combination of space-geodetic techniques at the measurement level: Methodology and main issues, Journal of Geophysical Research, Vol. 112, B05410, doi:10.1029/2006JB004336.Google Scholar
  7. Fey, A.L., C. Ma, E.F. Arias, P. Charlot, M. Feissel-Vernier, A.-M. Gontier, C.S. Jacobs, J. Li, D.S. MacMillan (2004). The Second Extension of the International Celestial Reference Frame: ICRF-EXT.2, Astron. J. 127, 3587-3608.CrossRefGoogle Scholar
  8. Gambis, D., N. Essaifi, E. Eisop, and M. Feissel (1993). Universal time derived from VLBI, SLR and GPS. IERS technical note 16, Dickey and Feissel (eds), ppIV15-20.Google Scholar
  9. Gambis, D. (2004). Monitoring Earth Orientation at the IERS using space-geodetic observations. J. of Geodesy, 78, pp 295-303, state-of-the-art and prospective, J. of Geodesy. 78 (4-5):295-303, doi: 10.1007/s00190-004-0394-1.CrossRefGoogle Scholar
  10. Gambis, D., R. Biancale, J.-M. Lemoine, J.-C. Marty, S. Loyer, L. Soudarin, T. Carlucci, N. Capitaine, Ph. Bério, D. Coulot, P. Exertier, P. Charlot and Z. Altamimi (2006). Global combination from space geodetic techniques, Proc. Journées Systèmes de Référence 2005, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main.Google Scholar
  11. Gambis, D., R. Biancale, J.-M. Lemoine, J.-C. Marty, S. Loyer, L. Soudarin, T. Carlucci, N. Capitaine, Ph. Bério, D. Coulot, P. Exertier, P. Charlot and Z. Altamimi (2007). Global combination from space geodetic techniques, in IERS Annual report for 2005, pp. 127-137 W. Dick and B. Richter (eds), BKG, 175p. Google Scholar
  12. Ma, C., E.F. Arias,T.M. Eubanks, A.L. Fey, A.-M. Gontier, C.S. Jacobs,O.J. Sovers,B.A. Archinal and P. Charlot (1998).The International Celestial Reference Frame as realized by Very Long Baseline Interferometry. Astron. J.116, 516-546.CrossRefGoogle Scholar
  13. McCarthy, D.D, G. Petit (2004). IERS Conventions 2003, IERS Technical Note No. 32. Google Scholar
  14. Nothnagel, A. (2005). VTRF2005 - A combined VLBI Terrestrial Reference Frame. In: Proceedings of the 17th Working Meeting on European VLBI for Geodesy and Astrometry, pp 118-124.Google Scholar
  15. Ray, R.D., D.J. Steinberg, B.F. Chao (1994).Science, 264, 830.CrossRefGoogle Scholar
  16. Ray, J.,Z. Altamimi (2005).Evaluation of co-location ties relating the VLBI and GPS reference frames. J. of Geodesy79(4-5):189-195, doi:10.1007/s00190-005-0456-z.CrossRefGoogle Scholar
  17. Ray, J.,J. Kouba, Z. Altamimi (2005).Is there utility in rigorous combinations of VLBI and GPS Earth orientation parameters? J. of Geodesy 79(9):505-511, doi: 10.1007/s00190-005-0007-7.CrossRefGoogle Scholar
  18. Rothacher, M,G. Beutler,T.A. Herring,R. Weber (1999).Estimation of nutation using the Global Positioning System. J. of Geophys. Res. 104(B3):4835-4859, doi: 10.1029/1998JB900078.CrossRefGoogle Scholar
  19. Sahin, M., P.A. Cross and P.C. Sellers (1992).Bull. Géod. 66, 284.CrossRefGoogle Scholar
  20. Sillard, P. and C. Boucher (2001).Review of algebraic constraints in terrestrial reference frame datum definition. J. of Geodesy75, 63-73.CrossRefGoogle Scholar
  21. Thaller, D., M. Krügel,M. Rothacher,V. Tesmer,R. Schmid and D. Angermann (2007). Combined Earth Orientation Parameters based on Homogeneous and Continuous VLBI and GPS data, J. of Geodesy, Volume 81, Issue 6-8, pp.529-541.CrossRefGoogle Scholar
  22. Yaya, Ph. (2002). Apport des combinaisons de techniques astrométriques et géodésiques à l’estimation des paramètres d’orientation de la terre. PhD thesis, Observatoire de ParisGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Gambis
    • 1
  • R. Biancale
    • 2
  • T. Carlucci
    • 1
  • J.M. Lemoine
    • 2
  • J.C. Marty
    • 2
  • G. Bourda
    • 3
  • P. Charlot
    • 3
  • S. Loyer
    • 4
  • T. Lalanne
    • 4
  • L. Soudarin
    • 4
  • F. Deleflie
    • 5
  1. 1.Observatoire de Paris/SYRTE/UMR 8630-CNRSParisFrance
  2. 2.CNES/OMP/DTP/UMR 5562-CNRSToulouseFrance
  3. 3.Observatoire de Bordeaux/UMR 5804-CNRSBordeauxFrance
  4. 4.CLSRamonville-St-AgneFrance
  5. 5.OCA/GEMINI/UMR 6203-CNRSGrasseFrance

Personalised recommendations