Experimental Evidence for Quantum Structure in Cognition

  • Diederik Aerts
  • Sven Aerts
  • Liane Gabora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5494)


We prove a theorem that shows that a collection of experimental data of membership weights of items with respect to a pair of concepts and its conjunction cannot be modeled within a classical measure theoretic weight structure in case the experimental data contain the effect called overextension. Since the effect of overextension, analogue to the well-known guppy effect for concept combinations, is abundant in all experiments testing weights of items with respect to pairs of concepts and their conjunctions, our theorem constitutes a no-go theorem for classical measure structure for common data of membership weights of items with respect to concepts and their combinations. We put forward a simple geometric criterion that reveals the non classicality of the membership weight structure and use experimentally measured membership weights estimated by subjects in experiments from [26] to illustrate our geometrical criterion. The violation of the classical weight structure is similar to the violation of the well-known Bell inequalities studied in quantum mechanics, and hence suggests that the quantum formalism and hence the modeling by quantum membership weights, as for example in [17] , can accomplish what classical membership weights cannot do.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schaden, M.: Quantum finance: A quantum approach to stock price fluctuations. Physica A 316, 511–538 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baaquie, B.E.: Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Bagarello, F.: An operational approach to stock markets. Journal of Physics A 39, 6823–6840 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Bordley, R.F.: Quantum mechanical and human violations of compound probability principles: Toward a generalized Heisenberg uncertainty principle. Operations Research 46, 923–926 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bordley, R.F., Kadane, J.B.: Experiment dependent priors in psychology and physics. Theory and Decision 47, 213–227 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Foundations of Science 1, 85–97 (1994); Reprinted in: Van Fraassen, B. (ed.): Topics in the Foundation of Statistics, pp. 111–122. Kluwer Academic, Dordrecht (1997) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gabora, L., Aerts, D.: Contextualizing concepts. In: Proceedings of the 15th International FLAIRS Conference. Special track: Categorization and Concept Representation: Models and Implications, Pensacola Florida, May 14-17, pp. 148–152. American Association for Artificial Intelligence (2002)Google Scholar
  8. 8.
    Gabora, L., Aerts, D.: Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence 14, 327–358 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Aerts, D., Gabora, L.: A theory of concepts and their combinations I: The structure of the sets of contexts and properties. Kybernetes 34, 167–191 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Aerts, D., Gabora, L.: A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes 34, 192–221 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. Journal of Mathematical Psychology 50, 220–241 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Busemeyer, J.R., Matthew, M., Wang, Z.: A quantum information processing theory explanation of disjunction effects. Proceedings of the Cognitive Science Society (2006)Google Scholar
  13. 13.
    Aerts, D.: Quantum interference and superposition in cognition: Development of a theory for the disjunction of concepts (2007), Archive address and link: http://arxiv.org/abs/0705.0975
  14. 14.
    Aerts, D.: General quantum modeling of combining concepts: A quantum field model in Fock space (2007), Archive address and link: http://arxiv.org/abs/0705.1740
  15. 15.
    Franco, R.: The conjunction fallacy and interference effects (2007), Archive address and link: http://arxiv.org/abs/0708.3948
  16. 16.
    Franco, R.: Quantum mechanics and rational ignorance (2007), Archive address and link: http://arxiv.org/abs/physics/0702163
  17. 17.
    Aerts, D.: Quantum Structure in Cognition. Journal of Mathematical Psychology (2009), archive reference and link: http://uk.arxiv.org/abs/0805.3850
  18. 18.
    Aerts, D., Czachor, M.: Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A, Mathematical and Theoretical 37, L123-L132 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Widdows, D.: Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan, July 7-12, 2003, pp. 136–143 (2003)Google Scholar
  20. 20.
    Widdows, D., Peters, S.: Word vectors and quantum logic: Experiments with negation and disjunction. In: Mathematics of Language, vol. 8, pp. 141–154. Bloomington, Indiana (2003)Google Scholar
  21. 21.
    Van Rijsbergen, K.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  22. 22.
    Aerts, D., Czachor, M., D’Hooghe, B.: Towards a quantum evolutionary scheme: violating bell’s inequalities in language. In: Gontier, N., Van Bendegem, J.P., Aerts, D. (eds.) Evolutionary Epistemology, Language and Culture - A Non Adaptationist Systems Theoretical Approach. Springer, Heidelberg (2006)Google Scholar
  23. 23.
    Widdows, D.: Geometry and Meaning. CSLI Publications, University of Chicago Press (2006)MATHGoogle Scholar
  24. 24.
    Osherson, D.N., Smith, E.E.: On the adequacy of prototype theory as a theory of concepts. Cognition 9, 35–58 (1981)CrossRefGoogle Scholar
  25. 25.
    Hampton, J.A.: Inheritance of attributes in natural concept conjunctions. Memory & Cognition 15, 55–71 (1987)CrossRefGoogle Scholar
  26. 26.
    Hampton, J.A.: Overextension of conjunctive concepts: Evidence for a unitary model for concept typicality and class inclusion. Journal of Experimental Psychology: Learning, Memory, and Cognition 14, 12–32 (1988)Google Scholar
  27. 27.
    Hampton, J.A.: Disjunction of natural concepts. Memory & Cognition 16, 579–591 (1988)CrossRefGoogle Scholar
  28. 28.
    Hampton, J.A.: The combination of prototype concepts. In: Schwanenflugel, P. (ed.) The Psychology of Word Meanings. Erlbaum, Hillsdale (1991)Google Scholar
  29. 29.
    Hampton, J.A.: Conceptual combination: Conjunction and negation of natural concepts. Memory & Cognition 25, 888–909 (1997)CrossRefGoogle Scholar
  30. 30.
    Hampton, J.A.: Conceptual combination. In: Lamberts, K., Shanks, D. (eds.) Knowledge, Concepts, and Categories, pp. 133–159. Psychology Press, Hove (1997)Google Scholar
  31. 31.
    Osherson, D.N., Smith, E.E.: Gradedness and conceptual combination. Cognition 12, 299–318 (1982)CrossRefGoogle Scholar
  32. 32.
    Rips, L.J.: The current status of research on concept combination. Mind & Language 10, 72–104 (1995)CrossRefGoogle Scholar
  33. 33.
    Smith, E.E., Osherson, D.N.: Conceptual combination with prototype concepts. Cognitive Science 8, 357–361 (1988)Google Scholar
  34. 34.
    Springer, K., Murphy, G.L.: Feature availability in conceptual combination. Psychological Science 3, 111–117 (1992)CrossRefGoogle Scholar
  35. 35.
    Storms, G., De Boeck, P., Van Mechelen, I., Ruts, W.: Not guppies, nor goldfish, but tumble dryers, Noriega, Jesse Jackson, panties, car crashes, bird books, and Stevie Wonder. Memory & Cognition 26, 143–145 (1998)CrossRefGoogle Scholar
  36. 36.
    Pitowsky, I.: Quantum Probability, Quantum Logic. Lecture Notes in Physics, vol. 321. Springer, Heidelberg (1989)MATHGoogle Scholar
  37. 37.
    Aerts, S., Aerts, D.: When can a data set be described by quantum theory? In: Bruza, P., Lawless, W., van Rijsbergen, K., Sofge, D., Coecke, B., Clark, S. (eds.) Proceedings of the Second Quantum Interaction Symposium, Oxford 2008, pp. 27–33. College Publications, London (2008)Google Scholar
  38. 38.
    Aerts, D., D’Hooghe, B.: Classical logical versus quantum conceptual thought: examples in economics, decision theory and concept theory. In: Bruza, P.D., Sofge, D., Lawless, W., Van Rijsbergen, C.J., Klusch, M. (eds.) QI 2009. LNCS (LNAI), vol. 5494, pp. 128–142. Springer, Heidelberg (2009)Google Scholar
  39. 39.
    Tversky, A., Shafir, E.: The disjunction effect in choice under uncertainty. Psychological Science 3(5), 305–309 (1992)CrossRefGoogle Scholar
  40. 40.
    Tversky, A., Kahneman, D.: Judgments of and by representativeness. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment under uncertainty: Heuristics and biases. Cambridge University Press, Cambridge (1982)Google Scholar
  41. 41.
    Tversky, A., Kahneman, D.: Extension versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review 90(4), 293–315 (1983)CrossRefGoogle Scholar
  42. 42.
    Bar-Hillel, M., Neter, E.: How alike is it versus how likely is it: A disjunction fallacy in probability judgments. Journal of Personality and Social Psychology 65, 1119–1131 (1993)CrossRefGoogle Scholar
  43. 43.
    Gavanski, I., Roskos-Ewoldsen, D.R.: Representativeness and conjoint probability. Journal of Personality and Social Psychology 61, 181–194 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Sven Aerts
    • 1
  • Liane Gabora
    • 2
  1. 1.Leo Apostel CenterBrussels Free UniversityBrusselsBelgium
  2. 2.Psychology and Computer ScienceUniversity of British ColumbiaCanada

Personalised recommendations