Quantum Theory, the Chinese Room Argument and the Symbol Grounding Problem

  • Ravi V. Gomatam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5494)

Abstract

I offer an alternative to Searle’s original Chinese Room argument which I call the Sanskrit Room argument (SRA). SRA distinguishes between syntactic token and semantic symbol manipulations and shows that both are involved in human language understanding. Within classical mechanics, which gives an adequate scientific account of token manipulation, a symbol remains a subjective construct. I describe how an objective, quantitative theory of semantic symbols could be developed by applying the Schrodinger equation directly to macroscopic objects independent of Born’s rule and hence independent of current statistical quantum mechanics. Such a macroscopic quantum mechanics opens the possibility for developing a new theory of computing wherein the Universal Turing Machine (UTM) performs semantic symbol manipulation and models macroscopic quantum computing.

Keywords

Artificial Intelligence Chinese Room Argument Symbol Grounding Problem Sanskrit Room Argument Quantum theory Universal Turing Machine Topology Exotic manifolds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Searle, J.R.: Minds, Brains, and Programs. Behavorial and Brain Sciences 3, 417–424 (1980)CrossRefGoogle Scholar
  2. 2.
    Kiparsky, P.: On the architecture of Panini grammar. Lectures delivered at the Hyderabad Conference on the Architecture of Grammar (2002), http://www.stanford.edu/~kiparsky/Papers/hyderabad.pdf
  3. 3.
    Ladyman, J.: Understanding Philosophy of Science. Routledge, London (2002)CrossRefGoogle Scholar
  4. 4.
    Koch, C., Hepp, K.: Quantum Mechanics in the Brain. Nature 440, 611–612 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Gomatam, R.: Quantum Realism and Haecceity. In: Ghose, P. (ed.) Materialism and Immaterialism in India and the West: Varying Vistas. CSC, New Delhi (2008), http://bvinst.edu/gomatam/pub-2008.pdf Google Scholar
  6. 6.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)MATHGoogle Scholar
  7. 7.
    Fuchs, C., Peres, A.: Quantum Theory Needs No Interpretation. Physics Today, 70–71 (March 2000)Google Scholar
  8. 8.
    Gomatam, R.: Niels Bohr’s Interpretation and the Copenhagen Interpretation – Are the Two Incompatible? Philosophy of Science 74(5), 736–748 (2007), http://www.bvinst.edu/gomatam/pub-2007-01.pdf MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gomatam, R.: Physics and Commonsense - Relearning the connections in the light of quantum theory. In: Chattopadhyaya, D.P., Sengupta, A.K. (eds.) Philosophical Consciousness and Scientific Knowedge. CSC, Indian Council of Philosophical Research, New Delhi (2004), http://www.bvinst.edu/gomatam/pub-2004-01.pdf Google Scholar
  10. 10.
    Gomatam, R.: Quantum Theory and the Observation Problem. Journal of Consciousness Studies 6(11-12), 173–190 (1999), http://www.bvinst.edu/gomatam/pub-1999-01.pdf Google Scholar
  11. 11.
    Asselmeyer-Maluga, T., Brans, C.H.: Exotic Smoothness and Physics: Differential Topology and Spacetime Models. World Scientific, Singapore (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ravi V. Gomatam
    • 1
  1. 1.Bhaktivedanta InstituteBerkeleyUSA

Personalised recommendations