Classical Logical Versus Quantum Conceptual Thought: Examples in Economics, Decision Theory and Concept Theory

  • Diederik Aerts
  • Bart D’Hooghe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5494)


Inspired by a quantum mechanical formalism to model concepts and their disjunctions and conjunctions, we put forward in this paper a specific hypothesis. Namely that within human thought two superposed layers can be distinguished: (i) a layer given form by an underlying classical deterministic process, incorporating essentially logical thought and its indeterministic version modeled by classical probability theory; (ii) a layer given form under influence of the totality of the surrounding conceptual landscape, where the different concepts figure as individual entities rather than (logical) combinations of others, with measurable quantities such as ‘typicality’, ‘membership’, ‘representativeness’, ‘similarity’, ‘applicability’, ‘preference’ or ‘utility’ carrying the influences. We call the process in this second layer ‘quantum conceptual thought’, which is indeterministic in essence, and contains holistic aspects, but is equally well, although very differently, organized than logical thought. A substantial part of the ‘quantum conceptual thought process’ can be modeled by quantum mechanical probabilistic and mathematical structures. We consider examples of three specific domains of research where the effects of the presence of quantum conceptual thought and its deviations from classical logical thought have been noticed and studied, i.e. economics, decision theory, and concept theories and which provide experimental evidence for our hypothesis.


Decision Theory Classical Logic Concept Theory Ambiguity Aversion Individual Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boole, G.: An Investigation of the Laws of Thought: On Which Are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberly, London (1854)zbMATHGoogle Scholar
  2. 2.
    Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea Publishing Company, New York (1956)zbMATHGoogle Scholar
  3. 3.
    Osherson, D.N., Smith, E.E.: On the adequacy of prototype theory as a theory of concepts. Cognition 9, 35–58 (1981)CrossRefGoogle Scholar
  4. 4.
    Osherson, D.N., Smith, E.E.: Gradedness and conceptual combination. Cognition 12, 299–318 (1982)CrossRefGoogle Scholar
  5. 5.
    Smith, E.E., Osherson, D.N.: Conceptual combination with prototype concepts. Cognitive Science 8, 357–361 (1988)Google Scholar
  6. 6.
    Hampton, J.A.: Overextension of conjunctive concepts: Evidence for a unitary model for concept typicality and class inclusion. Journal of Experimental Psychology: Learning, Memory, and Cognition 14, 12–32 (1988)Google Scholar
  7. 7.
    Hampton, J.A.: Disjunction of natural concepts. Memory & Cognition 16, 579–591 (1988)CrossRefGoogle Scholar
  8. 8.
    Storms, G., De Boeck, P., Van Mechelen, I., Geeraerts, D.: Dominance and non-commutativity effects in concept conjunctions: Extensional or intensional basis? Memory & Cognition 21, 752–762 (1993)CrossRefGoogle Scholar
  9. 9.
    Rips, L.J.: The current status of research on concept combination. Mind & Language 10, 72–104 (1995)CrossRefGoogle Scholar
  10. 10.
    Storms, G., De Boeck, P., Van Mechelen, I., Ruts, W.: The dominance effect in concept conjunctions: Generality and interaction aspects. Journal of Experimental Psychology: Learning, Memory & Cognition 22, 1–15 (1996)Google Scholar
  11. 11.
    Hampton, J.A.: Conceptual combination: Conjunction and negation of natural concepts. Memory & Cognition 25, 888–909 (1997)CrossRefGoogle Scholar
  12. 12.
    Storms, G., De Boeck, P., Van Mechelen, I., Ruts, W.: Not guppies, nor goldfish, but tumble dryers, Noriega, Jesse Jackson, panties, car crashes, bird books, and Stevie Wonder. Memory & Cognition 26, 143–145 (1998)CrossRefGoogle Scholar
  13. 13.
    Storms, G., de Boeck, P., Hampton, J.A., van Mechelen, I.: Predicting conjunction typicalities by component typicalities. Psychonomic Bulletin and Review 6, 677–684 (1999)CrossRefGoogle Scholar
  14. 14.
    Kahneman, D., Tversky, A.: Subjective probability: A judgment of representativeness. Cognitive Psychology 3, 430–454 (1972)CrossRefGoogle Scholar
  15. 15.
    Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)CrossRefGoogle Scholar
  16. 16.
    Tversky, A., Kahneman, D.: Judgments of and by representativeness. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment under uncertainty: Heuristics and biases. Cambridge University Press, Cambridge (1982)Google Scholar
  17. 17.
    Morier, D.M., Borgida, E.: The conjunction fallacy: A task specific phenomenon? Personality and Social Psychology Bulletin 10, 243–252 (1984)CrossRefGoogle Scholar
  18. 18.
    Wells, G.L.: The conjunction error and the representativeness heuristic. Social Cognition 3, 266–279 (1985)CrossRefGoogle Scholar
  19. 19.
    Carlson, B.W., Yates, J.F.: Disjunction errors in qualitative likelihood judgment. Organizational Behavior and Human Decision Processes 44, 368–379 (1989)CrossRefGoogle Scholar
  20. 20.
    Gavanski, I., Roskos-Ewoldsen, D.R.: Representativeness and conjoint probability. Journal of Personality and Social Psychology 61, 181–194 (1991)CrossRefGoogle Scholar
  21. 21.
    Bar-Hillel, M., Neter, E.: How alike is it versus how likely is it: A disjunction fallacy in probability judgments. Journal of Personality and Social Psychology 65, 1119–1131 (1993)CrossRefGoogle Scholar
  22. 22.
    Bagassi, M., Macchi, L.: The ‘vanishing’ of the disjunction effect by sensible procrastination. Mind & Society 6, 41–52 (2007)CrossRefGoogle Scholar
  23. 23.
    Allais, M.: Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école Américaine. Econometrica 21, 503–546 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ellsberg, D.: Risk, Ambiguity, and the Savage Axioms. Quarterly Journal of Economics 75(4), 643–669 (1961)CrossRefzbMATHGoogle Scholar
  25. 25.
    Freud, S.: Die Traumdeutung. Fischer-Taschenbuch, Berlin (1899)Google Scholar
  26. 26.
    James, W.: Some Problems of Philosophy. Harvard University Press, Cambridge (1910)Google Scholar
  27. 27.
    Piaget, J.: Le Langage et la Pensée Chez l’Enfant. Delachaux et Niestlé, Paris (1923)Google Scholar
  28. 28.
    Bruner, J.: Acts of Meaning. Harvard University Press, Cambridge (1990)Google Scholar
  29. 29.
    Gabora, L., Aerts, D.: Evolution of the Integrated Worldview. Journal of Mathematical Psychology (2009)Google Scholar
  30. 30.
    Aerts, D.: Quantum interference and superposition in cognition: A theory for the disjunction of concepts (2007), Archive reference and link:
  31. 31.
    Aerts, D.: General quantum modeling of combining concepts: A quantum field model in Fock space (2007), Archive reference and link:
  32. 32.
    Aerts, D.: Quantum structure in cognition. Journal of Mathematical Psychology (2009), Archive reference and link:
  33. 33.
    Schaden, M.: Quantum finance: A quantum approach to stock price fluctuations. Physica A 316, 511–538 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Baaquie, B.E.: Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  35. 35.
    Haven, E.: Pilot-wave theory and financial option pricing. International Journal of Theoretical Physics 44, 1957–1962 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Bagarello, F.: An operational approach to stock markets. Journal of Physics A 39, 6823–6840 (2006)zbMATHGoogle Scholar
  37. 37.
    Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Foundations of Science 1, 85–97 (1994); Reprinted in: Van Fraassen, B. (ed.): Topics in the Foundation of Statistics, pp. 111–122. Springer, Dordrecht (1994)Google Scholar
  38. 38.
    Gabora, L., Aerts, D.: Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence 14, 327–358 (2002)CrossRefzbMATHGoogle Scholar
  39. 39.
    Aerts, D., Gabora, L.: A theory of concepts and their combinations I & II. Kybernetes 34, 167–221 (2005)CrossRefzbMATHGoogle Scholar
  40. 40.
    Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. Journal of Mathematical Psychology 50, 220–241 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Busemeyer, J.R., Matthew, M., Wang, Z.: A quantum information processing theory explanation of disjunction effects. Proceedings of the Cognitive Science Society (2006)Google Scholar
  42. 42.
    Widdows, D.: Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan, pp. 136–143 (2003)Google Scholar
  43. 43.
    Widdows, D., Peters, S.: Word vectors and quantum logic: Experiments with negation and disjunction. In: Mathematics of Language, vol. 8, pp. 141–154. Bloomington, Indiana (2003)Google Scholar
  44. 44.
    Aerts, D., Czachor, M.: Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A, Mathematical and Theoretical 37, L123-L132 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Van Rijsbergen, K.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  46. 46.
    Aerts, D., Czachor, M., D’Hooghe, B.: Towards a quantum evolutionary scheme: violating bell’s inequalities in language. In: Gontier, N., Van Bendegem, J.P., Aerts, D. (eds.) Evolution- ary Epistemology, Language and Culture - A Non Adaptationist Systems Theoretical Approach. Springer, Dordrecht (2006)Google Scholar
  47. 47.
    Bruza, P.D., Cole, R.J.: Quantum logic of semantic space: An exploratory investigation of context effects in practical reasoning. In: Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them: Essays in Honour of Dov Gabbay. College Publications (2005)Google Scholar
  48. 48.
    von Neumann, J.: Zur Theorie der Gesellschaftsspiele (On the Theory of Parlor Games). Mathematische Annalen 100, 295–300 (1928)MathSciNetCrossRefGoogle Scholar
  49. 49.
    von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  50. 50.
    Savage, L.J.: The Foundations of Statistics. Wiley, New-York (1944)zbMATHGoogle Scholar
  51. 51.
    Ben-Haim, Y.: Info-gap decision theory: Decisions under severe uncertainty. Academic Press, London (2006) (section 11.1)Google Scholar
  52. 52.
    Tversky, A., Shafir, E.: The disjunction effect in choice under uncertainty. Psychological Science 3(5), 305–309 (1992)CrossRefGoogle Scholar
  53. 53.
    Tversky, A., Kahneman, D.: Extension versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review 90(4), 293–315 (1983)CrossRefGoogle Scholar
  54. 54.
    Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica 47, 263–291 (1979)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Bart D’Hooghe
    • 1
  1. 1.Leo Apostel CenterBrussels Free UniversityBrusselsBelgium

Personalised recommendations